論文の概要: Identity information based on human magnetocardiography signals
- arxiv url: http://arxiv.org/abs/2403.13820v1
- Date: Sat, 2 Mar 2024 17:18:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 07:17:26.053701
- Title: Identity information based on human magnetocardiography signals
- Title(参考訳): ヒト心磁図信号に基づく身元情報
- Authors: Pengju Zhang, Chenxi Sun, Jianwei Zhang, Hong Guo,
- Abstract要約: 我々は,光ポンピング磁気センサ(OPM)を用いた心磁図(MCG)信号に基づく個人識別システムを開発した。
本システムは,MCG信号からなる行列を2*2ウィンドウで走査することにより,身体上の異なる位置から得られる信号をパターン認識を用いて解析する。
その結果,個人識別の精度は97.04%となった。
- 参考スコア(独自算出の注目度): 5.769131596674978
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We have developed an individual identification system based on magnetocardiography (MCG) signals captured using optically pumped magnetometers (OPMs). Our system utilizes pattern recognition to analyze the signals obtained at different positions on the body, by scanning the matrices composed of MCG signals with a 2*2 window. In order to make use of the spatial information of MCG signals, we transform the signals from adjacent small areas into four channels of a dataset. We further transform the data into time-frequency matrices using wavelet transforms and employ a convolutional neural network (CNN) for classification. As a result, our system achieves an accuracy rate of 97.04% in identifying individuals. This finding indicates that the MCG signal holds potential for use in individual identification systems, offering a valuable tool for personalized healthcare management.
- Abstract(参考訳): 我々は,光ポンピング磁気センサ(OPM)を用いた磁気心磁図(MCG)信号に基づく個人識別システムを開発した。
本システムは,MCG信号からなる行列を2*2ウィンドウで走査することにより,身体上の異なる位置から得られる信号をパターン認識を用いて解析する。
MCG信号の空間情報を利用するために,隣接する小領域からの信号をデータセットの4つのチャネルに変換する。
さらに、ウェーブレット変換を用いてデータを時間周波数行列に変換し、分類に畳み込みニューラルネットワーク(CNN)を用いる。
その結果,個人識別の精度は97.04%となった。
この発見は、MCG信号が個人識別システムでの使用の可能性を持ち、パーソナライズされた医療管理のための貴重なツールを提供することを示している。
関連論文リスト
- Modally Reduced Representation Learning of Multi-Lead ECG Signals through Simultaneous Alignment and Reconstruction [0.0]
本稿では,ECG信号のチャネルに依存しない統一表現を生成することができるECG信号の表現学習手法を提案する。
生成された埋め込みは、下流タスクのためのECG信号の有能な機能として機能します。
論文 参考訳(メタデータ) (2024-05-24T06:06:05Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - ECG classification using Deep CNN and Gramian Angular Field [2.685668802278155]
提案手法は,グラム角場変換を用いた時間周波数1Dベクトルを2次元画像に変換することに基づく。
その結果,異常検出では97.47%,98.65%の分類精度が得られた。
これは、心血管疾患の診断と治療、および異常の検出に重要な意味を持つ。
論文 参考訳(メタデータ) (2023-07-25T13:26:52Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - SVM and ANN based Classification of EMG signals by using PCA and LDA [0.0]
筋電信号(MES)は、人体の筋肉を一次元パターンとして生成する。
Support Vector Machines (SVM) は n 次元超平面を識別し、入力特徴点の集合を異なるクラスに分離する技術である。
論文 参考訳(メタデータ) (2021-10-22T06:44:08Z) - Embedding Signals on Knowledge Graphs with Unbalanced Diffusion Earth
Mover's Distance [63.203951161394265]
現代の機械学習では、多くの領域における観測間の相互作用や類似性によって生じる大きなグラフに遭遇することが一般的である。
本研究では,地球移動器距離(EMD)と測地コストを基礎となるグラフ上で比較し,グラフ信号のデータセットを整理する。
いずれの場合も,UDEMDをベースとした埋め込みは,他の手法と比較して高精度な距離を求めることができる。
論文 参考訳(メタデータ) (2021-07-26T17:19:02Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - SE-ECGNet: A Multi-scale Deep Residual Network with
Squeeze-and-Excitation Module for ECG Signal Classification [6.124438924401066]
ECG信号分類タスクのためのマルチスケール深部残差ネットワークを開発しています。
我々は,マルチリード信号を2次元行列として扱うことを提案する。
提案モデルは,mit-bihデータセットでは99.2%,alibabaデータセットでは89.4%のf1-scoreを実現する。
論文 参考訳(メタデータ) (2020-12-10T08:37:44Z) - A Hierarchical Graph Signal Processing Approach to Inference from
Spatiotemporal Signals [14.416786768268233]
グラフ信号処理(GSP)の新興領域を動機として,信号から推論を行う新しい手法を提案する。
本稿では,階層的特徴抽出手法の開発に活用する。
Kアグル発作検出コンテストの頭蓋内脳波(iEEG)データセットについて検討した。
論文 参考訳(メタデータ) (2020-10-25T17:08:13Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
非生理的表現と生理的特徴を混同するための横断的特徴分離戦略を提案する。
次に, 蒸留された生理特性を用いて, 頑健なマルチタスク生理測定を行った。
歪んだ特徴は、最終的に平均HR値やr信号のような複数の生理的信号の合同予測に使用される。
論文 参考訳(メタデータ) (2020-07-16T09:39:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。