Measuring Diversity in Co-creative Image Generation
- URL: http://arxiv.org/abs/2403.13826v1
- Date: Wed, 6 Mar 2024 01:55:14 GMT
- Title: Measuring Diversity in Co-creative Image Generation
- Authors: Francisco Ibarrola, Kazjon Grace,
- Abstract summary: We propose an alternative based on entropy of neural network encodings for comparing diversity between sets of images.
We also compare two pre-trained networks and show how the choice relates to the notion of diversity that we want to evaluate.
- Score: 1.4963011898406866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quality and diversity have been proposed as reasonable heuristics for assessing content generated by co-creative systems, but to date there has been little agreement around what constitutes the latter or how to measure it. Proposed approaches for assessing generative models in terms of diversity have limitations in that they compare the model's outputs to a ground truth that in the era of large pre-trained generative models might not be available, or entail an impractical number of computations. We propose an alternative based on entropy of neural network encodings for comparing diversity between sets of images that does not require ground-truth knowledge and is easy to compute. We also compare two pre-trained networks and show how the choice relates to the notion of diversity that we want to evaluate. We conclude with a discussion of the potential applications of these measures for ideation in interactive systems, model evaluation, and more broadly within computational creativity.
Related papers
- Bridging Generative and Discriminative Models for Unified Visual
Perception with Diffusion Priors [56.82596340418697]
We propose a simple yet effective framework comprising a pre-trained Stable Diffusion (SD) model containing rich generative priors, a unified head (U-head) capable of integrating hierarchical representations, and an adapted expert providing discriminative priors.
Comprehensive investigations unveil potential characteristics of Vermouth, such as varying granularity of perception concealed in latent variables at distinct time steps and various U-net stages.
The promising results demonstrate the potential of diffusion models as formidable learners, establishing their significance in furnishing informative and robust visual representations.
arXiv Detail & Related papers (2024-01-29T10:36:57Z) - Towards Mode Balancing of Generative Models via Diversity Weights [1.2354076490479513]
We present diversity weights, a training scheme that increases a model's output diversity by balancing the modes in the training dataset.
We discuss connections of our approach to diversity, equity, and inclusion in generative machine learning more generally, and computational creativity specifically.
arXiv Detail & Related papers (2023-04-24T09:55:17Z) - Interpretable Diversity Analysis: Visualizing Feature Representations In
Low-Cost Ensembles [0.0]
This paper introduces several interpretability methods that can be used to qualitatively analyze diversity.
We demonstrate these techniques by comparing the diversity of feature representations between child networks using two low-cost ensemble algorithms.
arXiv Detail & Related papers (2023-02-12T00:32:03Z) - MAUVE Scores for Generative Models: Theory and Practice [95.86006777961182]
We present MAUVE, a family of comparison measures between pairs of distributions such as those encountered in the generative modeling of text or images.
We find that MAUVE can quantify the gaps between the distributions of human-written text and those of modern neural language models.
We demonstrate in the vision domain that MAUVE can identify known properties of generated images on par with or better than existing metrics.
arXiv Detail & Related papers (2022-12-30T07:37:40Z) - An Information-Theoretic Approach for Estimating Scenario Generalization
in Crowd Motion Prediction [27.10815774845461]
We propose a novel scoring method, which characterizes generalization of models trained on source crowd scenarios and applied to target crowd scenarios.
The Interaction component aims to characterize the difficulty of scenario domains, while the diversity of a scenario domain is captured in the Diversity score.
Our experimental results validate the efficacy of the proposed method on several simulated and real-world (source,target) generalization tasks.
arXiv Detail & Related papers (2022-11-02T01:39:30Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Random Network Distillation as a Diversity Metric for Both Image and
Text Generation [62.13444904851029]
We develop a new diversity metric that can be applied to data, both synthetic and natural, of any type.
We validate and deploy this metric on both images and text.
arXiv Detail & Related papers (2020-10-13T22:03:52Z) - Uncertainty-Aware Few-Shot Image Classification [118.72423376789062]
Few-shot image classification learns to recognize new categories from limited labelled data.
We propose Uncertainty-Aware Few-Shot framework for image classification.
arXiv Detail & Related papers (2020-10-09T12:26:27Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.