Scheduled Knowledge Acquisition on Lightweight Vector Symbolic Architectures for Brain-Computer Interfaces
- URL: http://arxiv.org/abs/2403.13844v1
- Date: Mon, 18 Mar 2024 01:06:29 GMT
- Title: Scheduled Knowledge Acquisition on Lightweight Vector Symbolic Architectures for Brain-Computer Interfaces
- Authors: Yejia Liu, Shijin Duan, Xiaolin Xu, Shaolei Ren,
- Abstract summary: Classical feature engineering is computationally efficient but has low accuracy, whereas the recent neural networks (DNNs) improve accuracy but are computationally expensive and incur high latency.
As a promising alternative, the low-dimensional computing (LDC) classifier based on vector symbolic architecture (VSA), achieves small model size yet higher accuracy than classical feature engineering methods.
- Score: 18.75591257735207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain-Computer interfaces (BCIs) are typically designed to be lightweight and responsive in real-time to provide users timely feedback. Classical feature engineering is computationally efficient but has low accuracy, whereas the recent neural networks (DNNs) improve accuracy but are computationally expensive and incur high latency. As a promising alternative, the low-dimensional computing (LDC) classifier based on vector symbolic architecture (VSA), achieves small model size yet higher accuracy than classical feature engineering methods. However, its accuracy still lags behind that of modern DNNs, making it challenging to process complex brain signals. To improve the accuracy of a small model, knowledge distillation is a popular method. However, maintaining a constant level of distillation between the teacher and student models may not be the best way for a growing student during its progressive learning stages. In this work, we propose a simple scheduled knowledge distillation method based on curriculum data order to enable the student to gradually build knowledge from the teacher model, controlled by an $\alpha$ scheduler. Meanwhile, we employ the LDC/VSA as the student model to enhance the on-device inference efficiency for tiny BCI devices that demand low latency. The empirical results have demonstrated that our approach achieves better tradeoff between accuracy and hardware efficiency compared to other methods.
Related papers
- Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
We present a novel perspective on the interplay between SSL and DC paradigms.
We show that it is feasible to simultaneously learn a dense and gated sub-network from scratch in a SSL setting.
The co-evolution during pre-training of both dense and gated encoder offers a good accuracy-efficiency trade-off.
arXiv Detail & Related papers (2023-01-22T17:12:58Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
We propose a Directed Acyclic Graph Factorization Machine (KD-DAGFM) to learn the high-order feature interactions from existing complex interaction models for CTR prediction via Knowledge Distillation.
KD-DAGFM achieves the best performance with less than 21.5% FLOPs of the state-of-the-art method on both online and offline experiments.
arXiv Detail & Related papers (2022-11-21T03:09:42Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
Permutation flow shop scheduling (PFSS) is widely used in manufacturing systems.
We propose to train the model via expert-driven imitation learning, which accelerates convergence more stably and accurately.
Our model's network parameters are reduced to only 37% of theirs, and the solution gap of our model towards the expert solutions decreases from 6.8% to 1.3% on average.
arXiv Detail & Related papers (2022-10-31T09:46:26Z) - Benchmarking Learning Efficiency in Deep Reservoir Computing [23.753943709362794]
We introduce a benchmark of increasingly difficult tasks together with a data efficiency metric to measure how quickly machine learning models learn from training data.
We compare the learning speed of some established sequential supervised models, such as RNNs, LSTMs, or Transformers, with relatively less known alternative models based on reservoir computing.
arXiv Detail & Related papers (2022-09-29T08:16:52Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
This paper compares four state-of-the-art algorithms in two real applications: gesture recognition based on accelerometer data and image classification.
Our results confirm these systems' reliability and the feasibility of deploying them in tiny-memory MCUs.
arXiv Detail & Related papers (2022-09-01T17:05:20Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot object detection (FSOD) aims at learning a generic detector that can adapt to unseen tasks with scarce training samples.
We present an efficient pretrain-transfer framework (PTF) baseline with no computational increment.
We also propose an adaptive length re-scaling (ALR) strategy to alleviate the vector length inconsistency between the predicted novel weights and the pretrained base weights.
arXiv Detail & Related papers (2022-03-23T06:24:31Z) - A Brain-Inspired Low-Dimensional Computing Classifier for Inference on
Tiny Devices [17.976792694929063]
We propose a low-dimensional computing (LDC) alternative to hyperdimensional computing (HDC)
We map our LDC classifier into a neural equivalent network and optimize our model using a principled training approach.
Our LDC classifier offers an overwhelming advantage over the existing brain-inspired HDC models and is particularly suitable for inference on tiny devices.
arXiv Detail & Related papers (2022-03-09T17:20:12Z) - Light-weight Deformable Registration using Adversarial Learning with
Distilling Knowledge [17.475408305030278]
We introduce a new Light-weight Deformable Registration network that significantly reduces the computational cost while achieving competitive accuracy.
In particular, we propose a new adversarial learning with distilling knowledge algorithm that successfully leverages meaningful information from the effective but expensive teacher network to the student network.
The extensively experimental results on different public datasets show that our proposed method achieves state-of-the-art accuracy while significantly faster than recent methods.
arXiv Detail & Related papers (2021-10-04T09:59:01Z) - Boosting Light-Weight Depth Estimation Via Knowledge Distillation [21.93879961636064]
We propose a lightweight network that can accurately estimate depth maps using minimal computing resources.
We achieve this by designing a compact model architecture that maximally reduces model complexity.
Our method achieves comparable performance to state-of-the-art methods while using only 1% of their parameters.
arXiv Detail & Related papers (2021-05-13T08:42:42Z) - SynergicLearning: Neural Network-Based Feature Extraction for
Highly-Accurate Hyperdimensional Learning [3.5024680868164437]
Machine learning models differ in terms of accuracy, computational/memory complexity, training time, and adaptability.
This work presents a hybrid, synergic machine learning model that excels at all the said characteristics and is suitable for incremental, on-line learning on a chip.
The proposed model has the same level of accuracy (i.e. $pm$1%) as NNs while achieving at least 10% improvement in accuracy compared to HD learning models.
arXiv Detail & Related papers (2020-07-30T04:35:20Z) - Distilling Object Detectors with Task Adaptive Regularization [97.52935611385179]
Current state-of-the-art object detectors are at the expense of high computational costs and are hard to deploy to low-end devices.
Knowledge distillation, which aims at training a smaller student network by transferring knowledge from a larger teacher model, is one of the promising solutions for model miniaturization.
arXiv Detail & Related papers (2020-06-23T15:58:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.