Smooth-Distill: A Self-distillation Framework for Multitask Learning with Wearable Sensor Data
- URL: http://arxiv.org/abs/2507.00061v1
- Date: Fri, 27 Jun 2025 06:51:51 GMT
- Title: Smooth-Distill: A Self-distillation Framework for Multitask Learning with Wearable Sensor Data
- Authors: Hoang-Dieu Vu, Duc-Nghia Tran, Quang-Tu Pham, Hieu H. Pham, Nicolas Vuillerme, Duc-Tan Tran,
- Abstract summary: This paper introduces Smooth-Distill, a novel self-distillation framework designed to simultaneously perform human activity recognition (HAR) and sensor placement detection.<n>Unlike conventional distillation methods that require separate teacher and student models, the proposed framework utilizes a smoothed, historical version of the model itself as the teacher.<n> Experimental results show that Smooth-Distill consistently outperforms alternative approaches across different evaluation scenarios.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces Smooth-Distill, a novel self-distillation framework designed to simultaneously perform human activity recognition (HAR) and sensor placement detection using wearable sensor data. The proposed approach utilizes a unified CNN-based architecture, MTL-net, which processes accelerometer data and branches into two outputs for each respective task. Unlike conventional distillation methods that require separate teacher and student models, the proposed framework utilizes a smoothed, historical version of the model itself as the teacher, significantly reducing training computational overhead while maintaining performance benefits. To support this research, we developed a comprehensive accelerometer-based dataset capturing 12 distinct sleep postures across three different wearing positions, complementing two existing public datasets (MHealth and WISDM). Experimental results show that Smooth-Distill consistently outperforms alternative approaches across different evaluation scenarios, achieving notable improvements in both human activity recognition and device placement detection tasks. This method demonstrates enhanced stability in convergence patterns during training and exhibits reduced overfitting compared to traditional multitask learning baselines. This framework contributes to the practical implementation of knowledge distillation in human activity recognition systems, offering an effective solution for multitask learning with accelerometer data that balances accuracy and training efficiency. More broadly, it reduces the computational cost of model training, which is critical for scenarios requiring frequent model updates or training on resource-constrained platforms. The code and model are available at https://github.com/Kuan2vn/smooth\_distill.
Related papers
- Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
Influence-based unlearning has emerged as a prominent approach to estimate the impact of individual training samples on model parameters without retraining.<n>This paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning)<n>We introduce the Influence Approximation Unlearning algorithm for efficient machine unlearning from the incremental perspective.
arXiv Detail & Related papers (2025-07-31T05:34:27Z) - Learning from Stochastic Teacher Representations Using Student-Guided Knowledge Distillation [64.15918654558816]
Self-distillation (SSD) training strategy is introduced for filtering and weighting teacher representation to distill from task-relevant representations only.<n> Experimental results on real-world affective computing, wearable/biosignal datasets from the UCR Archive, the HAR dataset, and image classification datasets show that the proposed SSD method can outperform state-of-the-art methods.
arXiv Detail & Related papers (2025-04-19T14:08:56Z) - Underlying Semantic Diffusion for Effective and Efficient In-Context Learning [113.4003355229632]
Underlying Semantic Diffusion (US-Diffusion) is an enhanced diffusion model that boosts underlying semantics learning, computational efficiency, and in-context learning capabilities.<n>We present a Feedback-Aided Learning (FAL) framework, which leverages feedback signals to guide the model in capturing semantic details.<n>We also propose a plug-and-play Efficient Sampling Strategy (ESS) for dense sampling at time steps with high-noise levels.
arXiv Detail & Related papers (2025-03-06T03:06:22Z) - Adaptive Retention & Correction: Test-Time Training for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.<n>We name our approach Adaptive Retention & Correction (ARC)<n>ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - Test-Time Adaptation for Combating Missing Modalities in Egocentric Videos [92.38662956154256]
Real-world applications often face challenges with incomplete modalities due to privacy concerns, efficiency needs, or hardware issues.<n>We propose a novel approach to address this issue at test time without requiring retraining.<n>MiDl represents the first self-supervised, online solution for handling missing modalities exclusively at test time.
arXiv Detail & Related papers (2024-04-23T16:01:33Z) - Adversarial Augmentation Training Makes Action Recognition Models More
Robust to Realistic Video Distribution Shifts [13.752169303624147]
Action recognition models often lack robustness when faced with natural distribution shifts between training and test data.
We propose two novel evaluation methods to assess model resilience to such distribution disparity.
We experimentally demonstrate the superior performance of the proposed adversarial augmentation approach over baselines across three state-of-the-art action recognition models.
arXiv Detail & Related papers (2024-01-21T05:50:39Z) - Benchmarking Learning Efficiency in Deep Reservoir Computing [23.753943709362794]
We introduce a benchmark of increasingly difficult tasks together with a data efficiency metric to measure how quickly machine learning models learn from training data.
We compare the learning speed of some established sequential supervised models, such as RNNs, LSTMs, or Transformers, with relatively less known alternative models based on reservoir computing.
arXiv Detail & Related papers (2022-09-29T08:16:52Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
This paper compares four state-of-the-art algorithms in two real applications: gesture recognition based on accelerometer data and image classification.
Our results confirm these systems' reliability and the feasibility of deploying them in tiny-memory MCUs.
arXiv Detail & Related papers (2022-09-01T17:05:20Z) - Self-Supervised Human Activity Recognition with Localized Time-Frequency
Contrastive Representation Learning [16.457778420360537]
We propose a self-supervised learning solution for human activity recognition with smartphone accelerometer data.
We develop a model that learns strong representations from accelerometer signals, while reducing the model's reliance on class labels.
We evaluate the performance of the proposed solution on three datasets, namely MotionSense, HAPT, and HHAR.
arXiv Detail & Related papers (2022-08-26T22:47:18Z) - Cross-modal Knowledge Distillation for Vision-to-Sensor Action
Recognition [12.682984063354748]
This study introduces an end-to-end Vision-to-Sensor Knowledge Distillation (VSKD) framework.
In this VSKD framework, only time-series data, i.e., accelerometer data, is needed from wearable devices during the testing phase.
This framework will not only reduce the computational demands on edge devices, but also produce a learning model that closely matches the performance of the computational expensive multi-modal approach.
arXiv Detail & Related papers (2021-10-08T15:06:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.