論文の概要: Control of Medical Digital Twins with Artificial Neural Networks
- arxiv url: http://arxiv.org/abs/2403.13851v1
- Date: Mon, 18 Mar 2024 19:30:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 18:28:52.676011
- Title: Control of Medical Digital Twins with Artificial Neural Networks
- Title(参考訳): ニューラルネットワークを用いた医療用デジタル双生児の制御
- Authors: Lucas Böttcher, Luis L. Fonseca, Reinhard C. Laubenbacher,
- Abstract要約: この研究は、医療用デジタルツインを制御する代替アプローチとして、動的インフォームドニューラルネットワークコントローラを導入している。
提案手法の有効性を他の手法と比較し, 評価を行った。
- 参考スコア(独自算出の注目度): 0.24578723416255746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective of personalized medicine is to tailor interventions to an individual patient's unique characteristics. A key technology for this purpose involves medical digital twins, computational models of human biology that can be personalized and dynamically updated to incorporate patient-specific data collected over time. Certain aspects of human biology, such as the immune system, are not easily captured with physics-based models, such as differential equations. Instead, they are often multi-scale, stochastic, and hybrid. This poses a challenge to existing model-based control and optimization approaches that cannot be readily applied to such models. Recent advances in automatic differentiation and neural-network control methods hold promise in addressing complex control problems. However, the application of these approaches to biomedical systems is still in its early stages. This work introduces dynamics-informed neural-network controllers as an alternative approach to control of medical digital twins. As a first use case for this method, the focus is on agent-based models, a versatile and increasingly common modeling platform in biomedicine. The effectiveness of the proposed neural-network control method is illustrated and benchmarked against other methods with two widely-used agent-based model types. The relevance of the method introduced here extends beyond medical digital twins to other complex dynamical systems.
- Abstract(参考訳): パーソナライズドメディカルの目的は、患者固有の特徴に対する介入を調整することである。
この目的のための重要な技術は、医療用デジタルツイン、ヒト生物学の計算モデルであり、患者固有のデータを時間とともに収集するパーソナライズされ、動的に更新することができる。
免疫系のような人間の生物学の特定の側面は、微分方程式のような物理学に基づくモデルでは容易には捉えられない。
代わりに、それらはしばしばマルチスケール、確率的、ハイブリッドである。
これは、そのようなモデルに容易に適用できない既存のモデルベースの制御と最適化アプローチに挑戦する。
自動微分法やニューラルネットワーク制御法の最近の進歩は、複雑な制御問題に対処する上で有望である。
しかし、これらのアプローチの生体医療システムへの応用は、まだ初期段階にある。
この研究は、医療用デジタルツインを制御する代替アプローチとして、動的インフォームドニューラルネットワークコントローラを導入している。
この手法の第一のユースケースとして、バイオメディシンにおける多用途で一般的なモデリングプラットフォームであるエージェントベースモデルに焦点が当てられている。
提案手法の有効性を実証し,2種類のエージェントモデルを用いた他の手法と比較した。
ここで紹介される方法の関連性は、医療用デジタル双生児以外にも、他の複雑な力学系にも及んでいる。
関連論文リスト
- Digital Twin Generators for Disease Modeling [2.341540989979203]
患者のデジタルツイン(英: Digital twin)とは、患者の健康状態の経時変化を記述する計算モデルである。
デジタル双生児は、人間の健康の個々のレベルのコンピュータシミュレーションを可能にすることによって、医療に革命をもたらす可能性がある。
論文 参考訳(メタデータ) (2024-05-02T17:23:04Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
筋骨格系と学習可能なパラメトリックハンドモデルMANOを統合し,MS-MANOを作成する。
このモデルは骨格系を駆動する筋肉と腱の力学をエミュレートし、結果として生じるトルク軌跡に生理学的に現実的な制約を与える。
また,マルチ層パーセプトロンネットワークによる初期推定ポーズを改良する,ループ式ポーズ改善フレームワークBioPRを提案する。
論文 参考訳(メタデータ) (2024-04-16T02:18:18Z) - From Noise to Signal: Unveiling Treatment Effects from Digital Health
Data through Pharmacology-Informed Neural-SDE [0.0]
デジタルヘルス技術(DHT)は、患者をパーソナライズし、継続的に、リアルタイムにモニタリングする。
これらの技術から洞察を得るには、臨床に関連のある疾患状態の変化を捉えるための適切なモデリング技術が必要である。
本稿では,これらの課題に対処可能な新しい薬理インフォームド・ニューラル微分方程式(SDE)モデルを提案する。
論文 参考訳(メタデータ) (2024-03-05T19:13:57Z) - Med-Real2Sim: Non-Invasive Medical Digital Twins using Physics-Informed Self-Supervised Learning [15.106435744696013]
デジタルツイン(Digital twin)は、数学的モデリングを用いてその定義する特徴を特徴づけ、シミュレートする現実世界の物理現象の仮想レプリカである。
非侵襲的な患者健康データのみを用いてデジタル双対モデルパラメータを同定する手法を提案する。
論文 参考訳(メタデータ) (2024-02-29T23:04:42Z) - Exploring hyperelastic material model discovery for human brain cortex:
multivariate analysis vs. artificial neural network approaches [10.003764827561238]
本研究の目的は、ヒト脳組織において最も好ましい物質モデルを特定することである。
我々は、広く受け入れられている古典モデルの一般化に、人工ニューラルネットワークと多重回帰法を適用した。
論文 参考訳(メタデータ) (2023-10-16T18:49:59Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
ニューラル固有微分方程式アルゴリズム(NESDE)を導入する。
NESDEは個別化モデリング、新しい治療ポリシーへの調整可能な一般化、高速で連続的でクローズドな予測を提供する。
本研究は, 総合的・現実的な医療問題におけるNESDEの堅牢性を実証し, 学習力学を用いて, 模擬医療体育環境の公開を行う。
論文 参考訳(メタデータ) (2023-06-24T17:01:51Z) - Universal Morphology Control via Contextual Modulation [52.742056836818136]
異なるロボット形態をまたいだ普遍的なポリシーの学習は、継続的な制御における学習効率と一般化を著しく向上させることができる。
既存の手法では、グラフニューラルネットワークやトランスフォーマーを使用して、異種状態と異なる形態のアクション空間を処理する。
本稿では,この依存関係を文脈変調によりモデル化する階層型アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-22T00:04:12Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
潜在ハイブリッドモデル(LHM)は、専門家が設計したODEのシステムと機械学習したNeural ODEを統合し、システムのダイナミクスを完全に記述する。
新型コロナウイルス患者のLHMと実世界の集中治療データについて検討した。
論文 参考訳(メタデータ) (2021-06-05T11:42:45Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
第一原則の手法は高いバイアスに悩まされるが、データ駆動モデリングは高いばらつきを持つ傾向がある。
本稿では,2つのモデリング手法を組み合わせて上記の問題を解くハイブリッドモデルであるPINODEについて述べる。
本研究の目的は,機械系のモデルベース制御とシステム同定である。
論文 参考訳(メタデータ) (2020-05-29T15:10:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。