Machine Learning-based Layer-wise Detection of Overheating Anomaly in LPBF using Photodiode Data
- URL: http://arxiv.org/abs/2403.13861v1
- Date: Wed, 20 Mar 2024 01:12:44 GMT
- Title: Machine Learning-based Layer-wise Detection of Overheating Anomaly in LPBF using Photodiode Data
- Authors: Nazmul Hasan, Apurba Kumar Saha, Andrew Wessman, Mohammed Shafae,
- Abstract summary: This research focuses on the detection of overheating anomalies using photodiode sensor data.
Photodiode sensors can collect high-frequency data from the melt pool, reflecting the process dynamics and thermal history.
The proposed method offers a machine learning framework to utilize photodiode sensor data for layer-wise detection of overheating anomalies.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Overheating anomaly detection is essential for the quality and reliability of parts produced by laser powder bed fusion (LPBF) additive manufacturing (AM). In this research, we focus on the detection of overheating anomalies using photodiode sensor data. Photodiode sensors can collect high-frequency data from the melt pool, reflecting the process dynamics and thermal history. Hence, the proposed method offers a machine learning (ML) framework to utilize photodiode sensor data for layer-wise detection of overheating anomalies. In doing so, three sets of features are extracted from the raw photodiode data: MSMM (mean, standard deviation, median, maximum), MSQ (mean, standard deviation, quartiles), and MSD (mean, standard deviation, deciles). These three datasets are used to train several ML classifiers. Cost-sensitive learning is used to handle the class imbalance between the "anomalous" layers (affected by overheating) and "nominal" layers in the benchmark dataset. To boost detection accuracy, our proposed ML framework involves utilizing the majority voting ensemble (MVE) approach. The proposed method is demonstrated using a case study including an open benchmark dataset of photodiode measurements from an LPBF specimen with deliberate overheating anomalies at some layers. The results from the case study demonstrate that the MSD features yield the best performance for all classifiers, and the MVE classifier (with a mean F1-score of 0.8654) surpasses the individual ML classifiers. Moreover, our machine learning methodology achieves superior results (9.66% improvement in mean F1-score) in detecting layer-wise overheating anomalies, surpassing the existing methods in the literature that use the same benchmark dataset.
Related papers
- In-Situ Infrared Camera Monitoring for Defect and Anomaly Detection in Laser Powder Bed Fusion: Calibration, Data Mapping, and Feature Extraction [0.26999000177990923]
Laser powder bed fusion (LPBF) process can incur defects due to melt pool instabilities, spattering, temperature increase, and powder spread anomalies.
Identifying defects through in-situ monitoring typically requires collecting, storing, and analyzing large amounts of data generated.
arXiv Detail & Related papers (2024-07-17T16:02:22Z) - Anomaly Detection of Tabular Data Using LLMs [54.470648484612866]
We show that pre-trained large language models (LLMs) are zero-shot batch-level anomaly detectors.
We propose an end-to-end fine-tuning strategy to bring out the potential of LLMs in detecting real anomalies.
arXiv Detail & Related papers (2024-06-24T04:17:03Z) - M3DM-NR: RGB-3D Noisy-Resistant Industrial Anomaly Detection via Multimodal Denoising [63.39134873744748]
Existing industrial anomaly detection methods primarily concentrate on unsupervised learning with pristine RGB images.
This paper proposes a novel noise-resistant M3DM-NR framework to leverage strong multi-modal discriminative capabilities of CLIP.
Extensive experiments show that M3DM-NR outperforms state-of-the-art methods in 3D-RGB multi-modal noisy anomaly detection.
arXiv Detail & Related papers (2024-06-04T12:33:02Z) - FlameFinder: Illuminating Obscured Fire through Smoke with Attentive Deep Metric Learning [11.218765140036254]
FlameFinder is designed to accurately detect flames, even when obscured by smoke, using thermal images from firefighter drones during wildfire monitoring.
Traditional RGB cameras struggle in such conditions, but thermal cameras can capture smoke-obscured flame features.
To address this issue, FlameFinder utilizes paired thermal-RGB images for training. By learning latent flame features from smoke-free samples, the model becomes less biased towards relative thermal gradients.
arXiv Detail & Related papers (2024-04-09T23:24:19Z) - The Blind Normalized Stein Variational Gradient Descent-Based Detection for Intelligent Massive Random Access [0.7655800373514546]
We present a novel early preamble detection scheme based on a maximum likelihood estimation (MLE) model.
A novel blind normalized Stein variational gradient descent (SVGD)-based detector is proposed to obtain an approximate solution to the MLE model.
The proposed block MHT layer outperforms other transform-based methods in terms of costs and denoising performance.
arXiv Detail & Related papers (2024-03-08T04:08:40Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - Predicting Defects in Laser Powder Bed Fusion using in-situ Thermal
Imaging Data and Machine Learning [0.0]
Variation in the local thermal history during the laser powder bed fusion process can cause microporosity defects.
In this work, we develop machine learning (ML) models that can use in-situ thermographic data to predict the microporosity of LPBF stainless steel materials.
arXiv Detail & Related papers (2021-12-16T21:25:16Z) - Performance, Successes and Limitations of Deep Learning Semantic
Segmentation of Multiple Defects in Transmission Electron Micrographs [9.237363938772479]
We perform semantic segmentation of defect types in electron microscopy images of irradiated FeCrAl alloys using a deep learning Mask Regional Convolutional Neural Network (Mask R-CNN) model.
We conduct an in-depth analysis of key model performance statistics, with a focus on quantities such as predicted distributions of defect shapes, defect sizes, and defect areal densities.
Overall, we find that the current model is a fast, effective tool for automatically characterizing and quantifying multiple defect types in microscopy images.
arXiv Detail & Related papers (2021-10-15T17:57:59Z) - Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic
Uncertainty [58.144520501201995]
Bi-Lipschitz regularization of neural network layers preserve relative distances between data instances in the feature spaces of each layer.
With the use of an attentive set encoder, we propose to meta learn either diagonal or diagonal plus low-rank factors to efficiently construct task specific covariance matrices.
We also propose an inference procedure which utilizes scaled energy to achieve a final predictive distribution.
arXiv Detail & Related papers (2021-10-12T22:04:19Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.