論文の概要: ExMap: Leveraging Explainability Heatmaps for Unsupervised Group Robustness to Spurious Correlations
- arxiv url: http://arxiv.org/abs/2403.13870v1
- Date: Wed, 20 Mar 2024 14:47:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 18:18:59.167709
- Title: ExMap: Leveraging Explainability Heatmaps for Unsupervised Group Robustness to Spurious Correlations
- Title(参考訳): ExMap: 教師なしグループロバストネスのための説明可能性ヒートマップの活用
- Authors: Rwiddhi Chakraborty, Adrian Sletten, Michael Kampffmeyer,
- Abstract要約: グループロバストネス戦略は、ディープラーニングモデルにおける学習バイアスを軽減することを目的としている。
既存の手法のほとんどは、グループのラベル分布へのアクセスに依存している。
従来の分類器におけるグループロバスト性を高めるために設計された,教師なし2段階の機構であるExMapを紹介する。
- 参考スコア(独自算出の注目度): 8.501377286600373
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Group robustness strategies aim to mitigate learned biases in deep learning models that arise from spurious correlations present in their training datasets. However, most existing methods rely on the access to the label distribution of the groups, which is time-consuming and expensive to obtain. As a result, unsupervised group robustness strategies are sought. Based on the insight that a trained model's classification strategies can be inferred accurately based on explainability heatmaps, we introduce ExMap, an unsupervised two stage mechanism designed to enhance group robustness in traditional classifiers. ExMap utilizes a clustering module to infer pseudo-labels based on a model's explainability heatmaps, which are then used during training in lieu of actual labels. Our empirical studies validate the efficacy of ExMap - We demonstrate that it bridges the performance gap with its supervised counterparts and outperforms existing partially supervised and unsupervised methods. Additionally, ExMap can be seamlessly integrated with existing group robustness learning strategies. Finally, we demonstrate its potential in tackling the emerging issue of multiple shortcut mitigation\footnote{Code available at \url{https://github.com/rwchakra/exmap}}.
- Abstract(参考訳): グループロバストネス戦略は、トレーニングデータセットに存在する刺激的な相関から生じるディープラーニングモデルにおける学習バイアスを軽減することを目的としている。
しかし、既存の手法のほとんどは、グループの名前の分布にアクセスすることに依存しており、それは時間がかかり、入手するのにコストがかかる。
その結果、教師なしのグループロバストネス戦略が求められた。
学習モデルの分類戦略を説明可能性ヒートマップに基づいて正確に推定できるという知見に基づいて,従来の分類器におけるグループロバスト性を高めるために設計された,教師なし2段階のメカニズムであるExMapを紹介した。
ExMapはクラスタリングモジュールを使用して、モデルの説明可能性ヒートマップに基づいて擬似ラベルを推論する。
ExMapの有効性を検証する実証的研究 - 教師付きメソッドとパフォーマンスギャップを橋渡しし、既存の部分教師付きメソッドと教師なしメソッドを上回ります。
さらに、ExMapは既存のグループロバストネス学習戦略とシームレスに統合できる。
最後に、マルチショートカット緩和の新興問題に取り組む可能性を示す。footnote{Code available at \url{https://github.com/rwchakra/exmap}}。
関連論文リスト
- Regularized Contrastive Partial Multi-view Outlier Detection [76.77036536484114]
RCPMOD(Regularized Contrastive partial Multi-view Outlier Detection)と呼ばれる新しい手法を提案する。
このフレームワークでは、コントラスト学習を利用して、ビュー一貫性のある情報を学び、一貫性の度合いでアウトレイラを識別する。
4つのベンチマークデータセットによる実験結果から,提案手法が最先端の競合より優れていることが示された。
論文 参考訳(メタデータ) (2024-08-02T14:34:27Z) - Unsupervised Temporal Action Localization via Self-paced Incremental
Learning [57.55765505856969]
本稿では,クラスタリングとローカライズトレーニングを同時に行うための,自己ペースの漸進学習モデルを提案する。
我々は,2つの段階的なインスタンス学習戦略を設計し,ビデオ擬似ラベルの信頼性を確保する。
論文 参考訳(メタデータ) (2023-12-12T16:00:55Z) - Weakly-Supervised Action Localization by Hierarchically-structured
Latent Attention Modeling [19.683714649646603]
弱教師付きアクションローカライゼーションは、ビデオレベルのラベルのみを持つ未トリミングビデオにおけるアクションインスタンスを認識およびローカライズすることを目的としている。
既存のモデルのほとんどはマルチインスタンス学習(MIL)に依存しており、ラベル付きバッグを分類することでラベル付きインスタンスの予測を監督している。
本稿では,特徴セマンティクスの時間的変動を学習するために,新しい注意に基づく階層構造潜在モデルを提案する。
論文 参考訳(メタデータ) (2023-08-19T08:45:49Z) - Outlier-Robust Group Inference via Gradient Space Clustering [50.87474101594732]
既存のメソッドは、最悪のグループのパフォーマンスを改善することができるが、それらは、しばしば高価で入手できないグループアノテーションを必要とする。
モデルパラメータの勾配の空間にデータをクラスタリングすることで,アウトレーヤの存在下でグループアノテーションを学習する問題に対処する。
そこで我々は,DBSCANのような標準クラスタリング手法に適合するように,マイノリティグループや外れ値に関する情報を保存しながら,勾配空間内のデータがより単純な構造を持つことを示す。
論文 参考訳(メタデータ) (2022-10-13T06:04:43Z) - Unsupervised Few-shot Learning via Deep Laplacian Eigenmaps [13.6555672824229]
深層ラプラシア固有写像を用いた教師なし数ショット学習法を提案する。
本手法は,類似したサンプルをグループ化することで,ラベルのないデータから表現を学習する。
我々は、教師なし学習において、ラプラシアン固有写像が崩壊した表現をいかに避けるかを解析的に示す。
論文 参考訳(メタデータ) (2022-10-07T14:53:03Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Structured Prediction with Partial Labelling through the Infimum Loss [85.4940853372503]
弱い監督の目標は、収集コストの安いラベル付け形式のみを使用してモデルを学習できるようにすることである。
これは、各データポイントに対して、実際のものを含むラベルのセットとして、監督がキャストされる不完全なアノテーションの一種です。
本稿では、構造化された予測と、部分的なラベリングを扱うための無限損失の概念に基づく統一的なフレームワークを提供する。
論文 参考訳(メタデータ) (2020-03-02T13:59:41Z) - Towards Using Count-level Weak Supervision for Crowd Counting [55.58468947486247]
本稿では,少数の位置レベルのアノテーション(十分に教師された)と大量のカウントレベルのアノテーション(弱教師付き)からモデルを学習する,弱教師付き群集カウントの問題について検討する。
我々は、生成した密度マップの自由を制限するための正規化を構築するために、単純なyet効果のトレーニング戦略、すなわちMultiple Auxiliary Tasks Training (MATT)を考案した。
論文 参考訳(メタデータ) (2020-02-29T02:58:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。