論文の概要: Sampling Audit Evidence Using a Naive Bayes Classifier
- arxiv url: http://arxiv.org/abs/2403.14069v1
- Date: Thu, 21 Mar 2024 01:35:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 15:46:42.793862
- Title: Sampling Audit Evidence Using a Naive Bayes Classifier
- Title(参考訳): ナイーブベイズ分類器を用いた聴覚証拠のサンプリング
- Authors: Guang-Yih Sheu, Nai-Ru Liu,
- Abstract要約: 本研究は,機械学習とサンプリングを統合することで,サンプリング手法を進歩させる。
機械学習の統合は、サンプリングバイアスを避け、ランダム性と可変性を保ち、リスクサンプルをターゲットする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Taiwan's auditors have suffered from processing excessive audit data, including drawing audit evidence. This study advances sampling techniques by integrating machine learning with sampling. This machine learning integration helps avoid sampling bias, keep randomness and variability, and target risker samples. We first classify data using a Naive Bayes classifier into some classes. Next, a user-based, item-based, or hybrid approach is employed to draw audit evidence. The representativeness index is the primary metric for measuring its representativeness. The user-based approach samples data symmetric around the median of a class as audit evidence. It may be equivalent to a combination of monetary and variable samplings. The item-based approach represents asymmetric sampling based on posterior probabilities for obtaining risky samples as audit evidence. It may be identical to a combination of non-statistical and monetary samplings. Auditors can hybridize those user-based and item-based approaches to balance representativeness and riskiness in selecting audit evidence. Three experiments show that sampling using machine learning integration has the benefits of drawing unbiased samples, handling complex patterns, correlations, and unstructured data, and improving efficiency in sampling big data. However, the limitations are the classification accuracy output by machine learning algorithms and the range of prior probabilities.
- Abstract(参考訳): 台湾の監査官は、過剰な監査データ処理に苦しんだ。
本研究は,機械学習とサンプリングを統合することで,サンプリング手法を進歩させる。
この機械学習の統合は、サンプリングバイアスを回避し、ランダム性と可変性を保ち、リスクサンプルをターゲットする。
まず、Naive Bayes分類器を用いてデータをいくつかのクラスに分類する。
次に、監査証拠を引き出すために、ユーザベース、アイテムベース、ハイブリッドアプローチを採用する。
代表性指数はその代表性を測定するための主要な指標である。
ユーザベースのアプローチは、監査証拠としてクラスの中央値の周りに対称なデータをサンプリングする。
これは通貨と可変サンプリングの組み合わせと等価である。
項目ベースアプローチは、リスクのあるサンプルを取得するための後部確率に基づく非対称サンプリングを監査証拠として表現する。
これは統計的でないサンプリングと金銭的なサンプリングの組み合わせと同一であるかもしれない。
監査者は、これらのユーザベースのアプローチとアイテムベースのアプローチをハイブリダイズして、監査証拠を選択する際の代表性とリスクのバランスをとることができる。
3つの実験により、機械学習統合を使用したサンプリングには、バイアスのないサンプルの描画、複雑なパターンの処理、相関、非構造化データの処理、ビッグデータのサンプリング効率の向上といったメリットがあることが示された。
しかし、その限界は、機械学習アルゴリズムによって出力される分類精度と、事前確率の範囲である。
関連論文リスト
- Which Pretrain Samples to Rehearse when Finetuning Pretrained Models? [60.59376487151964]
特定のタスクに関する微調整済みモデルが、テキストとビジョンタスクの事実上のアプローチになった。
このアプローチの落とし穴は、微調整中に起こる事前学習の知識を忘れることである。
本研究では,実際に忘れられているサンプルを識別・優先順位付けする新しいサンプリング手法であるmix-cdを提案する。
論文 参考訳(メタデータ) (2024-02-12T22:32:12Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - A Brief Tutorial on Sample Size Calculations for Fairness Audits [6.66743248310448]
本チュートリアルでは、フェアネス監査に必要なサブグループサンプルサイズを決定する方法についてのガイダンスを提供する。
本研究は,2値分類モデルと混同行列の要約として導出された多重公平度指標の監査に適用できる。
論文 参考訳(メタデータ) (2023-12-07T22:59:12Z) - How adversarial attacks can disrupt seemingly stable accurate
classifiers [80.2657717174889]
敵攻撃は、入力データに不連続な修正を加えることで、非正確な学習システムの出力を劇的に変化させる。
ここでは,これは高次元入力データを扱う分類器の基本的特徴であると考えられる。
実用システムで観測される重要な振る舞いを高い確率で発生させる、単純で汎用的なフレームワークを導入する。
論文 参考訳(メタデータ) (2023-09-07T12:02:00Z) - On the Universal Adversarial Perturbations for Efficient Data-free
Adversarial Detection [55.73320979733527]
本稿では,UAPに対して正常サンプルと逆サンプルの異なる応答を誘導する,データに依存しない逆検出フレームワークを提案する。
実験結果から,本手法は様々なテキスト分類タスクにおいて,競合検出性能を実現することが示された。
論文 参考訳(メタデータ) (2023-06-27T02:54:07Z) - Efficient Failure Pattern Identification of Predictive Algorithms [15.02620042972929]
本稿では,人間のアノテータチームとシーケンシャルレコメンデーションアルゴリズムからなる人間機械協調フレームワークを提案する。
その結果、様々な信号対雑音比で複数のデータセット上でのフレームワークの競合性能を実証的に実証した。
論文 参考訳(メタデータ) (2023-06-01T14:54:42Z) - Provable Robustness for Streaming Models with a Sliding Window [51.85182389861261]
オンラインコンテンツレコメンデーションや株式市場分析のようなディープラーニングアプリケーションでは、モデルは過去のデータを使って予測を行う。
入力ストリーム上の固定サイズのスライディングウインドウを使用するモデルに対して、ロバスト性証明を導出する。
私たちの保証は、ストリーム全体の平均モデルパフォーマンスを保ち、ストリームサイズに依存しないので、大きなデータストリームに適しています。
論文 参考訳(メタデータ) (2023-03-28T21:02:35Z) - Holistic Approach to Measure Sample-level Adversarial Vulnerability and
its Utility in Building Trustworthy Systems [17.707594255626216]
敵対的攻撃は、知覚不能な雑音を伴うイメージを摂動させ、誤ったモデル予測をもたらす。
本稿では,異なる視点を組み合わせることで,サンプルの敵対的脆弱性を定量化するための総合的アプローチを提案する。
サンプルレベルで確実に敵の脆弱性を推定することにより、信頼できるシステムを開発できることを実証する。
論文 参考訳(メタデータ) (2022-05-05T12:36:17Z) - Achieving Representative Data via Convex Hull Feasibility Sampling
Algorithms [35.29582673348303]
トレーニングデータのバイアスをサンプリングすることは、機械学習システムにおけるアルゴリズムバイアスの主要な原因である。
得られたデータから代表的データセットを収集できるかどうかを高信頼で判断するために,適応的なサンプリング手法を提案する。
論文 参考訳(メタデータ) (2022-04-13T23:14:05Z) - Sampling Bias Correction for Supervised Machine Learning: A Bayesian
Inference Approach with Practical Applications [0.0]
本稿では,データセットがラベルの不均衡などの意図的なサンプルバイアスを受ける可能性がある問題について議論する。
次に、この解をバイナリロジスティック回帰に適用し、データセットが意図的にサンプルバイアスを受けるシナリオについて議論する。
この手法は, 医療科学から画像認識, マーケティングに至るまで, ビッグデータの統計的推測に広く応用できる。
論文 参考訳(メタデータ) (2022-03-11T20:46:37Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
任意のバイナリ分類器によって生成される検出スコアから2次元表現を導出する簡単な方法を提案する。
ランク相関に基づいて,任意のスコアを用いた分類器の視覚的比較を容易にする。
提案手法は完全に汎用的であり,任意の検出タスクに適用可能だが,自動話者検証と音声アンチスプーフィングシステムによるスコアを用いた手法を実証する。
論文 参考訳(メタデータ) (2021-06-11T13:03:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。