論文の概要: A Taxonomy of Ambiguity Types for NLP
- arxiv url: http://arxiv.org/abs/2403.14072v1
- Date: Thu, 21 Mar 2024 01:47:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 15:46:42.787973
- Title: A Taxonomy of Ambiguity Types for NLP
- Title(参考訳): NLPのためのあいまいさ型分類法
- Authors: Margaret Y. Li, Alisa Liu, Zhaofeng Wu, Noah A. Smith,
- Abstract要約: NLP分析を容易にするために,英語で見られるあいまいさの分類法を提案する。
私たちの分類学は、言語あいまいさデータにおいて意味のある分割を実現するのに役立ち、データセットとモデルパフォーマンスのよりきめ細かい評価を可能にします。
- 参考スコア(独自算出の注目度): 53.10379645698917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ambiguity is an critical component of language that allows for more effective communication between speakers, but is often ignored in NLP. Recent work suggests that NLP systems may struggle to grasp certain elements of human language understanding because they may not handle ambiguities at the level that humans naturally do in communication. Additionally, different types of ambiguity may serve different purposes and require different approaches for resolution, and we aim to investigate how language models' abilities vary across types. We propose a taxonomy of ambiguity types as seen in English to facilitate NLP analysis. Our taxonomy can help make meaningful splits in language ambiguity data, allowing for more fine-grained assessments of both datasets and model performance.
- Abstract(参考訳): あいまいさは、話者間のより効果的なコミュニケーションを可能にする言語の重要コンポーネントであるが、NLPでは無視されることが多い。
最近の研究は、NLPシステムが人間の言語理解の特定の要素を理解するのに苦労していることを示唆している。
さらに、異なるタイプの曖昧さは、異なる目的に役立ち、解決のための異なるアプローチを必要とする可能性がある。
NLP分析を容易にするために,英語で見られるあいまいさの分類法を提案する。
私たちの分類学は、言語あいまいさデータにおいて意味のある分割を実現するのに役立ち、データセットとモデルパフォーマンスのよりきめ細かい評価を可能にします。
関連論文リスト
- Exploring transfer learning for Deep NLP systems on rarely annotated languages [0.0]
本論文はヒンディー語とネパール語間のPOSタグ付けにおける移動学習の適用について考察する。
ヒンディー語におけるマルチタスク学習において,ジェンダーや単数/複数タグ付けなどの補助的なタスクがPOSタグ付け精度の向上に寄与するかどうかを評価する。
論文 参考訳(メタデータ) (2024-10-15T13:33:54Z) - Towards Human Understanding of Paraphrase Types in ChatGPT [7.662751948664846]
アトミック・パラフレーズ・タイプ(APT)は、パラフレーズを異なる言語的変化に分解する。
APTY(Atomic Paraphrase TYpes)は15のアノテーションによる500の文レベルのアノテーションと単語レベルのアノテーションのデータセットである。
以上の結果から,ChatGPTは単純なAPTを生成できるが,複雑な構造に苦慮していることが明らかとなった。
論文 参考訳(メタデータ) (2024-07-02T14:35:10Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットに対するNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - Can Linguistic Knowledge Improve Multimodal Alignment in Vision-Language
Pretraining? [34.609984453754656]
本研究の目的は,意味表現や構文構造を含む包括的言語知識がマルチモーダルアライメントに与える影響を明らかにすることである。
具体的には、最初の大規模マルチモーダルアライメント探索ベンチマークであるSNAREを設計、リリースする。
論文 参考訳(メタデータ) (2023-08-24T16:17:40Z) - We're Afraid Language Models Aren't Modeling Ambiguity [136.8068419824318]
あいまいさの管理は人間の言語理解の重要な部分です。
文中のあいまいさは,他の文との係り受け関係に与える影響によって特徴付けられる。
我々は,多ラベルNLIモデルが曖昧さによって誤解を招く野生の政治的主張にフラグを付けることができることを示す。
論文 参考訳(メタデータ) (2023-04-27T17:57:58Z) - Testing the Ability of Language Models to Interpret Figurative Language [69.59943454934799]
比喩的・比喩的な言語は言論において一般的である。
現代の言語モデルが非リテラルなフレーズをどの程度解釈できるかについては、未解決の疑問が残る。
ウィノグラードスタイルの非文字言語理解タスクであるFig-QAを紹介する。
論文 参考訳(メタデータ) (2022-04-26T23:42:22Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
シンタックスとは異なり、セマンティクスは今日の事前訓練モデルによって表面化されないことを示す。
次に、畳み込みグラフエンコーダを使用して、タスク固有の微調整にセマンティック解析を明示的に組み込む。
論文 参考訳(メタデータ) (2020-12-10T01:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。