論文の概要: Towards Human Understanding of Paraphrase Types in ChatGPT
- arxiv url: http://arxiv.org/abs/2407.02302v1
- Date: Tue, 2 Jul 2024 14:35:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-03 15:06:12.768080
- Title: Towards Human Understanding of Paraphrase Types in ChatGPT
- Title(参考訳): ChatGPTにおけるパラフレーズの人間の理解に向けて
- Authors: Dominik Meier, Jan Philip Wahle, Terry Ruas, Bela Gipp,
- Abstract要約: アトミック・パラフレーズ・タイプ(APT)は、パラフレーズを異なる言語的変化に分解する。
APTY(Atomic Paraphrase TYpes)は15のアノテーションによる500の文レベルのアノテーションと単語レベルのアノテーションのデータセットである。
以上の結果から,ChatGPTは単純なAPTを生成できるが,複雑な構造に苦慮していることが明らかとなった。
- 参考スコア(独自算出の注目度): 7.662751948664846
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Paraphrases represent a human's intuitive ability to understand expressions presented in various different ways. Current paraphrase evaluations of language models primarily use binary approaches, offering limited interpretability of specific text changes. Atomic paraphrase types (APT) decompose paraphrases into different linguistic changes and offer a granular view of the flexibility in linguistic expression (e.g., a shift in syntax or vocabulary used). In this study, we assess the human preferences towards ChatGPT in generating English paraphrases with ten APTs and five prompting techniques. We introduce APTY (Atomic Paraphrase TYpes), a dataset of 500 sentence-level and word-level annotations by 15 annotators. The dataset also provides a human preference ranking of paraphrases with different types that can be used to fine-tune models with RLHF and DPO methods. Our results reveal that ChatGPT can generate simple APTs, such as additions and deletions, but struggle with complex structures (e.g., subordination changes). This study contributes to understanding which aspects of paraphrasing language models have already succeeded at understanding and what remains elusive. In addition, our curated datasets can be used to develop language models with specific linguistic capabilities.
- Abstract(参考訳): パラフレーズは、様々な方法で提示された表現を理解する人間の直感的な能力を表す。
言語モデルの現在のパラフレーズ評価は、主にバイナリアプローチを使用し、特定のテキスト変更の限定的な解釈性を提供する。
アトミック・パラフレーズ・タイプ(APT)は、パラフレーズを異なる言語的変化に分解し、言語表現の柔軟性(例えば、構文や語彙の変化)のきめ細かいビューを提供する。
本研究では,10のAPTと5つのプロンプト技術を用いた英語のパラフレーズ生成において,ChatGPTに対する人間の嗜好を評価する。
APTY(Atomic Paraphrase TYpes)は15のアノテーションによる500の文レベルのアノテーションと単語レベルのアノテーションのデータセットである。
データセットはまた、RLHFとDPOメソッドでモデルを微調整するために使用できる、異なるタイプのパラフレーズの人間の選好ランキングも提供する。
以上の結果から,ChatGPTは付加や削除などの単純なAPTを生成することができるが,複雑な構造(例えば,置換変化)に苦慮することが明らかとなった。
本研究は, 言い換え言語モデルのどの側面がすでに理解に成功し, 解明に寄与する。
さらに、我々のキュレートされたデータセットは、特定の言語機能を持つ言語モデルの開発に使用することができる。
関連論文リスト
- Detecting Document-level Paraphrased Machine Generated Content: Mimicking Human Writing Style and Involving Discourse Features [57.34477506004105]
機械生成コンテンツは、学術プラジャリズムや誤報の拡散といった課題を提起する。
これらの課題を克服するために、新しい方法論とデータセットを導入します。
人間の筆記スタイルをエミュレートするエンコーダデコーダモデルであるMhBARTを提案する。
また,PDTB前処理による談話解析を統合し,構造的特徴を符号化するモデルであるDTransformerを提案する。
論文 参考訳(メタデータ) (2024-12-17T08:47:41Z) - Exploring syntactic information in sentence embeddings through multilingual subject-verb agreement [1.4335183427838039]
我々は,特定の特性を持つ大規模でキュレートされた合成データを開発するためのアプローチを採っている。
我々は、ブラックバード言語行列(Blackbird Language Matrices)と呼ばれる新しい複数選択タスクとデータセットを使用して、特定の文法構造現象に焦点を当てる。
多言語テキストを一貫した方法で訓練したにもかかわらず、多言語事前学習言語モデルには言語固有の違いがあることが示される。
論文 参考訳(メタデータ) (2024-09-10T14:58:55Z) - Paraphrase Types Elicit Prompt Engineering Capabilities [9.311064293678154]
本研究は,言語的特徴がパラフレーズ型を通してモデルにどのような影響を及ぼすかを系統的,実証的に評価する。
120のタスクにまたがる5つのモデルと6種類のパラフレーズに対する行動変化を測定した。
この結果から,特定のパラフレーズ型にプロンプトを適用した場合に,言語モデルによるタスク改善の可能性が示唆された。
論文 参考訳(メタデータ) (2024-06-28T13:06:31Z) - We're Calling an Intervention: Exploring the Fundamental Hurdles in Adapting Language Models to Nonstandard Text [8.956635443376527]
非標準テキストへの言語モデル適応の根底にある課題を理解するための一連の実験を提示する。
我々は、言語モデルの既存バイアスとの相互作用と、いくつかの種類の言語的変動を近似する介入を設計する。
学習データのサイズや性質の異なる言語モデル適応時の介入を適用することで、知識伝達がいつ成功するかについて重要な洞察を得ることができる。
論文 参考訳(メタデータ) (2024-04-10T18:56:53Z) - A Taxonomy of Ambiguity Types for NLP [53.10379645698917]
NLP分析を容易にするために,英語で見られるあいまいさの分類法を提案する。
私たちの分類学は、言語あいまいさデータにおいて意味のある分割を実現するのに役立ち、データセットとモデルパフォーマンスのよりきめ細かい評価を可能にします。
論文 参考訳(メタデータ) (2024-03-21T01:47:22Z) - Few-Shot Detection of Machine-Generated Text using Style Representations [4.326503887981912]
人間の文章を巧みに模倣する言語モデルは、虐待のかなりのリスクを負う。
そこで本研究では,人間が作成したテキストから推定した書体スタイルの表現を活用することを提案する。
また,人間と機械作家の区別にも有効であることがわかった。
論文 参考訳(メタデータ) (2024-01-12T17:26:51Z) - Prompting Language Models for Linguistic Structure [73.11488464916668]
本稿では,言語構造予測タスクに対する構造化プロンプト手法を提案する。
提案手法は, 音声タグ付け, 名前付きエンティティ認識, 文チャンキングについて評価する。
PLMはタスクラベルの事前知識を事前学習コーパスに漏えいすることで有意な事前知識を含むが、構造化プロンプトは任意のラベルで言語構造を復元することも可能である。
論文 参考訳(メタデータ) (2022-11-15T01:13:39Z) - A Unified Understanding of Deep NLP Models for Text Classification [88.35418976241057]
我々は、テキスト分類のためのNLPモデルの統一的な理解を可能にする視覚解析ツールDeepNLPVisを開発した。
主要なアイデアは相互情報に基づく尺度であり、モデルの各レイヤがサンプル内の入力語の情報をどのように保持するかを定量的に説明する。
コーパスレベル、サンプルレベル、単語レベルビジュアライゼーションで構成されるマルチレベルビジュアライゼーションは、全体トレーニングセットから個々のサンプルまでの分析をサポートする。
論文 参考訳(メタデータ) (2022-06-19T08:55:07Z) - Polling Latent Opinions: A Method for Computational Sociolinguistics
Using Transformer Language Models [4.874780144224057]
我々は,Yelp レビューのより大きなコーパス内で,トランスフォーマー言語モデルの記憶と外挿の能力を用いて,サブグループの言語的振る舞いを学習する。
トレーニングコーパスに特定のキーワードが制限されたり、全く存在しない場合においても、GPTは正しい感情を持つ大量のテキストを正確に生成できることを示す。
論文 参考訳(メタデータ) (2022-04-15T14:33:58Z) - Interpreting Language Models with Contrastive Explanations [99.7035899290924]
言語モデルは、音声、数字、時制、意味論など、トークンを予測するための様々な特徴を考慮しなければならない。
既存の説明手法は、これらの特徴の証拠を1つの説明に分割するが、人間の理解には理解できない。
比較的な説明は、主要な文法現象の検証において、非対照的な説明よりも定量的に優れていることを示す。
論文 参考訳(メタデータ) (2022-02-21T18:32:24Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
言語モデルの語彙$-$典型的にはトレーニング前に選択され、後で永久に固定される$-$は、そのサイズに影響します。
言語モデルのための完全合成出力埋め込み層を提案する。
我々の知る限り、この結果はトレーニング語彙に依存しないサイズを持つ最初の単語レベル言語モデルである。
論文 参考訳(メタデータ) (2020-09-24T07:21:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。