M3: A Multi-Task Mixed-Objective Learning Framework for Open-Domain Multi-Hop Dense Sentence Retrieval
- URL: http://arxiv.org/abs/2403.14074v1
- Date: Thu, 21 Mar 2024 01:52:07 GMT
- Title: M3: A Multi-Task Mixed-Objective Learning Framework for Open-Domain Multi-Hop Dense Sentence Retrieval
- Authors: Yang Bai, Anthony Colas, Christan Grant, Daisy Zhe Wang,
- Abstract summary: M3 is a novel Multi-hop dense sentence retrieval system built upon a novel Multi-task Mixed-objective approach for dense text representation learning.
Our approach yields state-of-the-art performance on a large-scale open-domain fact verification benchmark dataset, FEVER.
- Score: 12.277521531556852
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent research, contrastive learning has proven to be a highly effective method for representation learning and is widely used for dense retrieval. However, we identify that relying solely on contrastive learning can lead to suboptimal retrieval performance. On the other hand, despite many retrieval datasets supporting various learning objectives beyond contrastive learning, combining them efficiently in multi-task learning scenarios can be challenging. In this paper, we introduce M3, an advanced recursive Multi-hop dense sentence retrieval system built upon a novel Multi-task Mixed-objective approach for dense text representation learning, addressing the aforementioned challenges. Our approach yields state-of-the-art performance on a large-scale open-domain fact verification benchmark dataset, FEVER. Code and data are available at: https://github.com/TonyBY/M3
Related papers
- Multi-Modal Retrieval For Large Language Model Based Speech Recognition [15.494654232953678]
We propose multi-modal retrieval with two approaches: kNN-LM and cross-attention techniques.
We show that speech-based multi-modal retrieval outperforms text based retrieval.
We achieve state-of-the-art recognition results on the Spoken-Squad question answering dataset.
arXiv Detail & Related papers (2024-06-13T22:55:22Z) - Generative Multi-Modal Knowledge Retrieval with Large Language Models [75.70313858231833]
We propose an innovative end-to-end generative framework for multi-modal knowledge retrieval.
Our framework takes advantage of the fact that large language models (LLMs) can effectively serve as virtual knowledge bases.
We demonstrate significant improvements ranging from 3.0% to 14.6% across all evaluation metrics when compared to strong baselines.
arXiv Detail & Related papers (2024-01-16T08:44:29Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Many or Few Samples? Comparing Transfer, Contrastive and Meta-Learning
in Encrypted Traffic Classification [68.19713459228369]
We compare transfer learning, meta-learning and contrastive learning against reference Machine Learning (ML) tree-based and monolithic DL models.
We show that (i) using large datasets we can obtain more general representations, (ii) contrastive learning is the best methodology.
While ML tree-based cannot handle large tasks but fits well small tasks, by means of reusing learned representations, DL methods are reaching tree-based models performance also for small tasks.
arXiv Detail & Related papers (2023-05-21T11:20:49Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
Large language models (LLMs) have demonstrated remarkable results in various natural language processing (NLP) tasks with in-context learning.
We propose a simple but effective in-context learning framework called ICL-D3IE.
Specifically, we extract the most difficult and distinct segments from hard training documents as hard demonstrations.
arXiv Detail & Related papers (2023-03-09T06:24:50Z) - Few-shot Multimodal Multitask Multilingual Learning [0.0]
We propose few-shot learning for a multimodal multitask multilingual (FM3) setting by adapting pre-trained vision and language models.
FM3 learns the most prominent tasks in the vision and language domains along with their intersections.
arXiv Detail & Related papers (2023-02-19T03:48:46Z) - Multi-Task Self-Supervised Learning for Image Segmentation Task [0.0]
The paper presents 1. Self-supervised techniques to boost semantic segmentation performance using multi-task learning with Depth prediction and Surface Normalization.
2. Performance evaluation of the different types of weighing techniques (UW, Nash-MTL) used for Multi-task learning.
arXiv Detail & Related papers (2023-02-05T21:25:59Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
We propose a new approach with multimodal contrastive learning and soft data augmentation for code search.
We conduct extensive experiments to evaluate the effectiveness of our approach on a large-scale dataset with six programming languages.
arXiv Detail & Related papers (2022-04-07T08:49:27Z) - Multi-Task Learning with Deep Neural Networks: A Survey [0.0]
Multi-task learning (MTL) is a subfield of machine learning in which multiple tasks are simultaneously learned by a shared model.
We give an overview of multi-task learning methods for deep neural networks, with the aim of summarizing both the well-established and most recent directions within the field.
arXiv Detail & Related papers (2020-09-10T19:31:04Z) - Multi-Task Learning for Dense Prediction Tasks: A Survey [87.66280582034838]
Multi-task learning (MTL) techniques have shown promising results w.r.t. performance, computations and/or memory footprint.
We provide a well-rounded view on state-of-the-art deep learning approaches for MTL in computer vision.
arXiv Detail & Related papers (2020-04-28T09:15:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.