論文の概要: Can ChatGPT Detect DeepFakes? A Study of Using Multimodal Large Language Models for Media Forensics
- arxiv url: http://arxiv.org/abs/2403.14077v3
- Date: Tue, 16 Apr 2024 01:08:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 22:26:44.326669
- Title: Can ChatGPT Detect DeepFakes? A Study of Using Multimodal Large Language Models for Media Forensics
- Title(参考訳): ChatGPTはディープフェイクを検出できるか? : メディアフォサイシクスにおける多モーダル大言語モデルを用いた検討
- Authors: Shan Jia, Reilin Lyu, Kangran Zhao, Yize Chen, Zhiyuan Yan, Yan Ju, Chuanbo Hu, Xin Li, Baoyuan Wu, Siwei Lyu,
- Abstract要約: AI生成メディアコンテンツを指すDeepFakesは、偽情報の手段としての利用が懸念されている。
本稿では,DeepFake検出におけるマルチモーダル大言語モデル(LLM)の機能について検討する。
- 参考スコア(独自算出の注目度): 46.99625341531352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: DeepFakes, which refer to AI-generated media content, have become an increasing concern due to their use as a means for disinformation. Detecting DeepFakes is currently solved with programmed machine learning algorithms. In this work, we investigate the capabilities of multimodal large language models (LLMs) in DeepFake detection. We conducted qualitative and quantitative experiments to demonstrate multimodal LLMs and show that they can expose AI-generated images through careful experimental design and prompt engineering. This is interesting, considering that LLMs are not inherently tailored for media forensic tasks, and the process does not require programming. We discuss the limitations of multimodal LLMs for these tasks and suggest possible improvements.
- Abstract(参考訳): AI生成メディアコンテンツを指すDeepFakesは、偽情報の手段としての利用が懸念されている。
DeepFakesの検出は現在、プログラムされた機械学習アルゴリズムで解決されている。
本研究では,DeepFake検出におけるマルチモーダル大言語モデル(LLM)の機能について検討する。
我々は,マルチモーダルLLMを実証するために定性的かつ定量的な実験を行い,慎重に設計し,迅速な技術によってAI生成画像を公開できることを実証した。
LLMは本質的にはメディアの法医学的タスクに向いておらず、そのプロセスはプログラミングを必要としないことを考慮すれば興味深い。
本稿では,これらのタスクに対するマルチモーダル LLM の限界について論じ,改善の可能性を提案する。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
タスクドリフトは攻撃者がデータを流出させたり、LLMの出力に影響を与えたりすることを可能にする。
そこで, 簡易線形分類器は, 分布外テストセット上で, ほぼ完全なLOC AUCでドリフトを検出することができることを示す。
このアプローチは、プロンプトインジェクション、ジェイルブレイク、悪意のある指示など、目に見えないタスクドメインに対して驚くほどうまく一般化する。
論文 参考訳(メタデータ) (2024-06-02T16:53:21Z) - MMIDR: Teaching Large Language Model to Interpret Multimodal Misinformation via Knowledge Distillation [15.343028838291078]
MMIDRは,マルチモーダル誤報の意思決定プロセスにおいて,文章の質や質の良質な説明を提供するためのフレームワークである。
マルチモーダルな誤情報を適切な命令追従形式に変換するために,データ拡張の視点とパイプラインを示す。
さらに, オープンソースのLLMに多モード誤情報を説明するために, プロプライエタリなLLMを蒸留する効率的な知識蒸留手法を設計する。
論文 参考訳(メタデータ) (2024-03-21T06:47:28Z) - Benchmarking Large Language Models for Molecule Prediction Tasks [7.067145619709089]
大規模言語モデル(LLM)は多くの自然言語処理(NLP)タスクの最前線にある。
LLMは分子予測タスクを効果的に扱えるのか?
6つの標準分子データセットの分類および回帰予測タスクを同定する。
テキストベースのモデルと、分子の幾何学的構造を分析するために特別に設計されたモデルを含む、既存の機械学習(ML)モデルと比較する。
論文 参考訳(メタデータ) (2024-03-08T05:59:56Z) - Probing Multimodal Large Language Models for Global and Local Semantic Representations [57.25949445963422]
マルチモーダル大言語モデルのどの層がグローバルな画像情報に最も力を注いでいるかを検討する。
本研究では,モデルの中間層が,よりグローバルな意味情報を符号化できることを見出した。
最上位のレイヤが過度にローカル情報に集中していることが分かり、グローバル情報をエンコードする能力の低下につながります。
論文 参考訳(メタデータ) (2024-02-27T08:27:15Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
大規模言語モデル(LLM)は、幅広いタスクにまたがる顕著な機能を示している。
自然言語で説明できる能力により、LLMは人間に与えられるパターンのスケールと複雑さを拡大することができる。
これらの新しい機能は、幻覚的な説明や膨大な計算コストなど、新しい課題を提起する。
論文 参考訳(メタデータ) (2024-01-30T17:38:54Z) - Octavius: Mitigating Task Interference in MLLMs via LoRA-MoE [83.00018517368973]
LLM(Large Language Models)は、命令チューニングを通じて、ゼロショット能力をマルチモーダル学習に拡張することができる。
ネガティブな対立や干渉は パフォーマンスに悪影響を及ぼすかもしれない
我々は、よく知られたMixture-of-Experts(MoE)と代表的なPEFT技法の1つであるLoRA(LoRA-MoE)を組み合わせて、マルチモーダル学習のための新しいLLMベースのデコーダ(LoRA-MoE)を設計する。
論文 参考訳(メタデータ) (2023-11-05T15:48:29Z) - Language Models as Zero-Shot Trajectory Generators [10.572264780575564]
大規模言語モデル(LLM)は最近、ロボットのハイレベルプランナーとして約束されている。
LLMは低レベルの軌道自体に使用する十分な知識を持っていないとしばしば仮定される。
本研究は,LLMが操作タスクに対して,エンドエフェクタの高密度なシーケンスを直接予測できるかどうかを考察する。
論文 参考訳(メタデータ) (2023-10-17T21:57:36Z) - DeepDecipher: Accessing and Investigating Neuron Activation in Large
Language Models [2.992602379681373]
DeepDecipherは、トランスフォーマーモデルのレイヤでニューロンを探索するためのAPIとインターフェースである。
本稿ではDeepDecipherの設計と機能について概説する。
我々は、ニューロンを分析し、モデルを比較し、モデル行動に関する洞察を得る方法を実証する。
論文 参考訳(メタデータ) (2023-10-03T08:15:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。