Carbon Footprint Reduction for Sustainable Data Centers in Real-Time
- URL: http://arxiv.org/abs/2403.14092v2
- Date: Mon, 25 Mar 2024 17:49:07 GMT
- Title: Carbon Footprint Reduction for Sustainable Data Centers in Real-Time
- Authors: Soumyendu Sarkar, Avisek Naug, Ricardo Luna, Antonio Guillen, Vineet Gundecha, Sahand Ghorbanpour, Sajad Mousavi, Dejan Markovikj, Ashwin Ramesh Babu,
- Abstract summary: We propose a Data Center Carbon Footprint Reduction (DC-CFR) multi-agent Reinforcement Learning (MARL) framework to optimize data centers for the objectives of carbon footprint reduction, energy consumption, and energy cost.
The results show that the DC-CFR MARL agents effectively resolved the complex interdependencies in optimizing cooling, load shifting, and energy storage in real-time for various locations under real-world dynamic weather and grid carbon intensity conditions.
- Score: 2.794742330785396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As machine learning workloads significantly increase energy consumption, sustainable data centers with low carbon emissions are becoming a top priority for governments and corporations worldwide. This requires a paradigm shift in optimizing power consumption in cooling and IT loads, shifting flexible loads based on the availability of renewable energy in the power grid, and leveraging battery storage from the uninterrupted power supply in data centers, using collaborative agents. The complex association between these optimization strategies and their dependencies on variable external factors like weather and the power grid carbon intensity makes this a hard problem. Currently, a real-time controller to optimize all these goals simultaneously in a dynamic real-world setting is lacking. We propose a Data Center Carbon Footprint Reduction (DC-CFR) multi-agent Reinforcement Learning (MARL) framework that optimizes data centers for the multiple objectives of carbon footprint reduction, energy consumption, and energy cost. The results show that the DC-CFR MARL agents effectively resolved the complex interdependencies in optimizing cooling, load shifting, and energy storage in real-time for various locations under real-world dynamic weather and grid carbon intensity conditions. DC-CFR significantly outperformed the industry standard ASHRAE controller with a considerable reduction in carbon emissions (14.5%), energy usage (14.4%), and energy cost (13.7%) when evaluated over one year across multiple geographical regions.
Related papers
- Game-Theoretic Deep Reinforcement Learning to Minimize Carbon Emissions and Energy Costs for AI Inference Workloads in Geo-Distributed Data Centers [3.3379026542599934]
This work introduces a unique approach combining Game Theory (GT) and Deep Reinforcement Learning (DRL) for optimizing the distribution of AI inference workloads in geo-distributed data centers.
The proposed technique integrates the principles of non-cooperative Game Theory into a DRL framework, enabling data centers to make intelligent decisions regarding workload allocation.
arXiv Detail & Related papers (2024-04-01T20:13:28Z) - Spatio-temporal load shifting for truly clean computing [0.5857582826810999]
We study the impact of shifting computing jobs and associated power loads both in time and between locations.
We isolate three signals relevant for informed use of loadblity.
The costs of 24/7 CFE are reduced by 1.29$pm$0.07 EUR/MWh for every additional percentage of flexible load.
arXiv Detail & Related papers (2024-03-26T13:36:42Z) - Heuristics and Metaheuristics for Dynamic Management of Computing and
Cooling Energy in Cloud Data Centers [0.0]
We propose novel power and thermal-aware strategies and models to provide joint cooling and computing optimizations.
Our results show that the combined awareness from both metaheuristic and best fit decreasing algorithms allow us to describe the global energy into faster and lighter optimization strategies.
This approach allows us to improve the energy efficiency of the data center, considering both computing and cooling infrastructures, in up to a 21.74% while maintaining quality of service.
arXiv Detail & Related papers (2023-12-17T09:40:36Z) - MOSAIC: A Multi-Objective Optimization Framework for Sustainable
Datacenter Management [2.9699290794642366]
We propose a novel framework for sustainable datacenter management.
We take into account multiple geography- and time-based factors including renewable energy sources, variable energy costs, power usage efficiency, carbon factors, and water intensity in energy.
Our framework achieves a cumulative improvement across all objectives (carbon, water, cost) of up to 4.61x compared to the state-of-the-arts.
arXiv Detail & Related papers (2023-11-14T23:05:37Z) - SHIELD: Sustainable Hybrid Evolutionary Learning Framework for Carbon,
Wastewater, and Energy-Aware Data Center Management [2.9699290794642366]
Geo-distributed data centers (GDDCs) have a significant associated environmental impact.
This paper proposes a novel framework to co-optimize carbon emissions, water footprint, and energy costs of GDDCs.
arXiv Detail & Related papers (2023-08-24T21:11:55Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
Recent breakthroughs in generative artificial intelligence have triggered a surge in demand for machine learning training, which poses significant cost burdens and environmental challenges due to its substantial energy consumption.
Scheduling training jobs among geographically distributed cloud data centers unveils the opportunity to optimize the usage of computing capacity powered by inexpensive and low-carbon energy.
We propose an algorithm based on multi-agent reinforcement learning and actor-critic methods to learn the optimal collaborative scheduling strategy through interacting with a cloud system built with real-life workload patterns, energy prices, and carbon intensities.
arXiv Detail & Related papers (2023-04-17T02:12:30Z) - Low Emission Building Control with Zero-Shot Reinforcement Learning [70.70479436076238]
Control via Reinforcement Learning (RL) has been shown to significantly improve building energy efficiency.
We show it is possible to obtain emission-reducing policies without a priori--a paradigm we call zero-shot building control.
arXiv Detail & Related papers (2022-08-12T17:13:25Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
This article breaks down and analyzes the main factors that influence the environmental footprint of distributed learning policies.
It models both vanilla and decentralized FL policies driven by consensus.
Results show that FL allows remarkable end-to-end energy savings (30%-40%) for wireless systems characterized by low bit/Joule efficiency.
arXiv Detail & Related papers (2021-03-18T16:04:42Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
We introduce a framework for tracking realtime energy consumption and carbon emissions.
We create a leaderboard for energy efficient reinforcement learning algorithms.
We propose strategies for mitigation of carbon emissions and reduction of energy consumption.
arXiv Detail & Related papers (2020-01-31T05:12:59Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.