SHIELD: Sustainable Hybrid Evolutionary Learning Framework for Carbon,
Wastewater, and Energy-Aware Data Center Management
- URL: http://arxiv.org/abs/2308.13086v1
- Date: Thu, 24 Aug 2023 21:11:55 GMT
- Title: SHIELD: Sustainable Hybrid Evolutionary Learning Framework for Carbon,
Wastewater, and Energy-Aware Data Center Management
- Authors: Sirui Qi, Dejan Milojicic, Cullen Bash, Sudeep Pasricha
- Abstract summary: Geo-distributed data centers (GDDCs) have a significant associated environmental impact.
This paper proposes a novel framework to co-optimize carbon emissions, water footprint, and energy costs of GDDCs.
- Score: 2.9699290794642366
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Today's cloud data centers are often distributed geographically to provide
robust data services. But these geo-distributed data centers (GDDCs) have a
significant associated environmental impact due to their increasing carbon
emissions and water usage, which needs to be curtailed. Moreover, the energy
costs of operating these data centers continue to rise. This paper proposes a
novel framework to co-optimize carbon emissions, water footprint, and energy
costs of GDDCs, using a hybrid workload management framework called SHIELD that
integrates machine learning guided local search with a decomposition-based
evolutionary algorithm. Our framework considers geographical factors and
time-based differences in power generation/use, costs, and environmental
impacts to intelligently manage workload distribution across GDDCs and data
center operation. Experimental results show that SHIELD can realize 34.4x
speedup and 2.1x improvement in Pareto Hypervolume while reducing the carbon
footprint by up to 3.7x, water footprint by up to 1.8x, energy costs by up to
1.3x, and a cumulative improvement across all objectives (carbon, water, cost)
of up to 4.8x compared to the state-of-the-art.
Related papers
- Game-Theoretic Deep Reinforcement Learning to Minimize Carbon Emissions and Energy Costs for AI Inference Workloads in Geo-Distributed Data Centers [3.3379026542599934]
This work introduces a unique approach combining Game Theory (GT) and Deep Reinforcement Learning (DRL) for optimizing the distribution of AI inference workloads in geo-distributed data centers.
The proposed technique integrates the principles of non-cooperative Game Theory into a DRL framework, enabling data centers to make intelligent decisions regarding workload allocation.
arXiv Detail & Related papers (2024-04-01T20:13:28Z) - Spatio-temporal load shifting for truly clean computing [0.5857582826810999]
We study the impact of shifting computing jobs and associated power loads both in time and between locations.
We isolate three signals relevant for informed use of loadblity.
The costs of 24/7 CFE are reduced by 1.29$pm$0.07 EUR/MWh for every additional percentage of flexible load.
arXiv Detail & Related papers (2024-03-26T13:36:42Z) - Carbon Footprint Reduction for Sustainable Data Centers in Real-Time [2.794742330785396]
We propose a Data Center Carbon Footprint Reduction (DC-CFR) multi-agent Reinforcement Learning (MARL) framework to optimize data centers for the objectives of carbon footprint reduction, energy consumption, and energy cost.
The results show that the DC-CFR MARL agents effectively resolved the complex interdependencies in optimizing cooling, load shifting, and energy storage in real-time for various locations under real-world dynamic weather and grid carbon intensity conditions.
arXiv Detail & Related papers (2024-03-21T02:59:56Z) - MOSAIC: A Multi-Objective Optimization Framework for Sustainable
Datacenter Management [2.9699290794642366]
We propose a novel framework for sustainable datacenter management.
We take into account multiple geography- and time-based factors including renewable energy sources, variable energy costs, power usage efficiency, carbon factors, and water intensity in energy.
Our framework achieves a cumulative improvement across all objectives (carbon, water, cost) of up to 4.61x compared to the state-of-the-arts.
arXiv Detail & Related papers (2023-11-14T23:05:37Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
Recent breakthroughs in generative artificial intelligence have triggered a surge in demand for machine learning training, which poses significant cost burdens and environmental challenges due to its substantial energy consumption.
Scheduling training jobs among geographically distributed cloud data centers unveils the opportunity to optimize the usage of computing capacity powered by inexpensive and low-carbon energy.
We propose an algorithm based on multi-agent reinforcement learning and actor-critic methods to learn the optimal collaborative scheduling strategy through interacting with a cloud system built with real-life workload patterns, energy prices, and carbon intensities.
arXiv Detail & Related papers (2023-04-17T02:12:30Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z) - Treehouse: A Case For Carbon-Aware Datacenter Software [4.7521372297013365]
The end of Dennard scaling and the slowing of Moore's Law has put the energy use of datacenters on an unsustainable path.
We argue that substantial reductions in the carbon intensity of datacenter computing are possible with a software-centric approach.
arXiv Detail & Related papers (2022-01-06T16:00:53Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
Combination of energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is a promising solution to improve energy efficiency.
In this paper, we study the spectrum, energy, and time resource management for deterministic-CR-NOMA IoT systems.
arXiv Detail & Related papers (2021-09-17T08:55:48Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
This article breaks down and analyzes the main factors that influence the environmental footprint of distributed learning policies.
It models both vanilla and decentralized FL policies driven by consensus.
Results show that FL allows remarkable end-to-end energy savings (30%-40%) for wireless systems characterized by low bit/Joule efficiency.
arXiv Detail & Related papers (2021-03-18T16:04:42Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
We introduce a framework for tracking realtime energy consumption and carbon emissions.
We create a leaderboard for energy efficient reinforcement learning algorithms.
We propose strategies for mitigation of carbon emissions and reduction of energy consumption.
arXiv Detail & Related papers (2020-01-31T05:12:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.