論文の概要: Learning Decomposable and Debiased Representations via Attribute-Centric Information Bottlenecks
- arxiv url: http://arxiv.org/abs/2403.14140v1
- Date: Thu, 21 Mar 2024 05:33:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 15:17:21.807820
- Title: Learning Decomposable and Debiased Representations via Attribute-Centric Information Bottlenecks
- Title(参考訳): 属性中心情報による非可逆的・疎外的表現の学習
- Authors: Jinyung Hong, Eun Som Jeon, Changhoon Kim, Keun Hee Park, Utkarsh Nath, Yezhou Yang, Pavan Turaga, Theodore P. Pavlic,
- Abstract要約: データセット内のターゲットラベルと突発的に相関するバイアス属性は、分類の不適切なショートカットを学習するニューラルネットワークに問題を引き起こす可能性がある。
本稿では,属性の合成表現を学習するための注目に基づく情報ボトルネックを導入し,新たなデバイアス化フレームワークであるデバイアスンググローバルワークスペースを提案する。
偏りのあるデータセットに対する包括的評価と定量的および定性的な分析を行い、アプローチの有効性を実証する。
- 参考スコア(独自算出の注目度): 21.813755593742858
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biased attributes, spuriously correlated with target labels in a dataset, can problematically lead to neural networks that learn improper shortcuts for classifications and limit their capabilities for out-of-distribution (OOD) generalization. Although many debiasing approaches have been proposed to ensure correct predictions from biased datasets, few studies have considered learning latent embedding consisting of intrinsic and biased attributes that contribute to improved performance and explain how the model pays attention to attributes. In this paper, we propose a novel debiasing framework, Debiasing Global Workspace, introducing attention-based information bottlenecks for learning compositional representations of attributes without defining specific bias types. Based on our observation that learning shape-centric representation helps robust performance on OOD datasets, we adopt those abilities to learn robust and generalizable representations of decomposable latent embeddings corresponding to intrinsic and biasing attributes. We conduct comprehensive evaluations on biased datasets, along with both quantitative and qualitative analyses, to showcase our approach's efficacy in attribute-centric representation learning and its ability to differentiate between intrinsic and bias-related features.
- Abstract(参考訳): データセットのターゲットラベルと突発的に相関するバイアス属性は、分類の不適切なショートカットを学習し、アウト・オブ・ディストリビューション(OOD)の一般化の能力を制限するニューラルネットワークに問題を引き起こす可能性がある。
バイアス付きデータセットからの正確な予測を保証するために、多くのデバイアスングアプローチが提案されているが、本質的な属性とバイアス付き属性からなる潜伏埋め込みの学習がパフォーマンスの向上に寄与し、モデルがどのように属性に注意を払うかを説明する研究はほとんどない。
本稿では,属性の構成表現を特定のバイアスタイプを定義せずに学習するための注意に基づく情報ボトルネックを導入した,新しいデバイアス処理フレームワークであるデバイアスンググローバルワークスペースを提案する。
形状中心表現の学習は,OODデータセット上での頑健な性能向上に寄与すると考えられることから,本質的・偏見的属性に対応する分解可能な潜伏埋め込みの頑健で一般化可能な表現を学習する能力を採用している。
属性中心表現学習における我々のアプローチの有効性と、本質的特徴と偏見的特徴を区別する能力を示すため、偏見付きデータセットの包括的評価を行い、定量的および定性的な分析を行った。
関連論文リスト
- DeNetDM: Debiasing by Network Depth Modulation [5.886480123226503]
DeNetDMは、浅層ニューラルネットワークが学習コア属性を優先するのに対して、より深いものは、異なる情報を取得することを課題とする際のバイアスを強調するという観察に基づく、新しいデバイアス手法である。
提案手法は,データ内のバイアス強調点の多様性を効果的に活用し,従来の手法を超越し,バイアス強調点の多様性を高めるための明示的な拡張に基づく手法の必要性を回避している。
論文 参考訳(メタデータ) (2024-03-28T22:17:19Z) - Prospector Heads: Generalized Feature Attribution for Large Models & Data [82.02696069543454]
本稿では,説明に基づく帰属手法の効率的かつ解釈可能な代替手段であるプロスペクタヘッドを紹介する。
入力データにおけるクラス固有のパターンの解釈と発見を、プロファイラヘッドがいかに改善できるかを実証する。
論文 参考訳(メタデータ) (2024-02-18T23:01:28Z) - Causality and Independence Enhancement for Biased Node Classification [56.38828085943763]
各種グラフニューラルネットワーク(GNN)に適用可能な新しい因果性・独立性向上(CIE)フレームワークを提案する。
提案手法は,ノード表現レベルでの因果的特徴と突発的特徴を推定し,突発的相関の影響を緩和する。
我々のアプローチCIEは、GNNの性能を大幅に向上するだけでなく、最先端の debiased ノード分類法よりも優れています。
論文 参考訳(メタデータ) (2023-10-14T13:56:24Z) - Model Debiasing via Gradient-based Explanation on Representation [14.673988027271388]
本稿では,デリケートな属性やプロキシな属性に関して,デバイアスを行う新しいフェアネスフレームワークを提案する。
我々のフレームワークは、過去の最先端のアプローチよりも、構造化されていないデータセットと構造化されたデータセットの公平性と正確なトレードオフを達成しています。
論文 参考訳(メタデータ) (2023-05-20T11:57:57Z) - Semi-FairVAE: Semi-supervised Fair Representation Learning with
Adversarial Variational Autoencoder [92.67156911466397]
逆変分オートエンコーダに基づく半教師付き公正表現学習手法を提案する。
我々は、バイアス認識モデルを用いて、機密属性の固有バイアス情報をキャプチャする。
また、偏見のないモデルを用いて、対立学習を用いて偏見情報を取り除き、偏見のない公正表現を学習する。
論文 参考訳(メタデータ) (2022-04-01T15:57:47Z) - General Greedy De-bias Learning [163.65789778416172]
本稿では,関数空間における勾配降下のような偏りのあるモデルとベースモデルを優雅に訓練する一般グリーディ・デバイアス学習フレームワーク(GGD)を提案する。
GGDは、事前知識を持つタスク固有バイアスモデルと、事前知識を持たない自己アンサンブルバイアスモデルの両方の設定の下で、より堅牢なベースモデルを学ぶことができる。
論文 参考訳(メタデータ) (2021-12-20T14:47:32Z) - Visual Recognition with Deep Learning from Biased Image Datasets [6.10183951877597]
視覚認知の文脈において、バイアスモデルがどのように治療問題に適用できるかを示す。
作業中のバイアス機構に関する(近似的な)知識に基づいて、我々のアプローチは観察を再重み付けする。
本稿では,画像データベース間で共有される低次元画像表現を提案する。
論文 参考訳(メタデータ) (2021-09-06T10:56:58Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z) - Regularizing Models via Pointwise Mutual Information for Named Entity
Recognition [17.767466724342064]
ドメイン内での性能を向上しつつ、一般化能力を高めるために、PMI(Pointwise Mutual Information)を提案する。
提案手法により,ベンチマークデータセットの単語とラベルの相関度を高く抑えることができる。
長い名前と複雑な構造を持つエンティティに対して、これらのエンティティは協調的あるいは特別な文字の偏りによって予測できる。
論文 参考訳(メタデータ) (2021-04-15T05:47:27Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。