Construction of topological quantum magnets from atomic spins on surfaces
- URL: http://arxiv.org/abs/2403.14145v2
- Date: Tue, 3 Sep 2024 06:47:53 GMT
- Title: Construction of topological quantum magnets from atomic spins on surfaces
- Authors: Hao Wang, Peng Fan, Jing Chen, Lili Jiang, Hong-Jun Gao, Jose L. Lado, Kai Yang,
- Abstract summary: We demonstrate topological quantum Heisenberg spin lattices, engineered with spin chains and two-dimensional spin arrays in a scanning tunnelling microscope (STM)
Our results provide an important bottom-up approach to simulating exotic quantum many-body phases of interacting spins.
- Score: 6.884621917906393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial quantum systems have emerged as indispensable platforms to realize exotic topological matter in a well-controlled manner. Here, we demonstrate topological quantum Heisenberg spin lattices, engineered with spin chains and two-dimensional spin arrays using spin 1/2 atoms on insulating films in a scanning tunnelling microscope (STM). We engineered with atomic precision both topological and trivial phases of the quantum spin model, realizing first- and second-order topological quantum magnets. Their many-body excitations were probed by single-atom electron spin resonance with ultrahigh energy resolution. The atomically-localized magnetic field of the STM tip allows us to directly visualize various topological bound modes including topological edge states, topological defects, and higher-order corner modes. Our results provide an important bottom-up approach to simulating exotic quantum many-body phases of interacting spins.
Related papers
- Phase diagram of the J1-J2 Heisenberg second-order topological quantum magnet [0.0]
We show the emergence of topological spinon corner modes stemming from the breathing order parameter of the Heisenberg model.
Our results establish the breathing frustrated square lattice Heisenberg model as a paradigmatic system to engineer topological quantum magnetism.
arXiv Detail & Related papers (2024-08-29T11:39:53Z) - Tunable topological phases in nanographene-based spin-1/2
alternating-exchange Heisenberg chains [8.1791518522452]
We present a versatile platform enabling site-selective spin manipulation in many-body spin systems.
Our findings are corroborated by theoretical calculations, opening promising avenues toward the development of spin-based quantum devices.
arXiv Detail & Related papers (2024-02-21T07:45:05Z) - Observing Topological Insulator Phases with a Programmable Quantum
Simulator [5.118772741438762]
Topological insulators exhibit fascinating properties such as the appearance of edge states protected by symmetries.
We experimentally implement a modified SSH model with long-range interacting spin systems in one-dimensional trapped ion crystals of up to $22$ spins.
arXiv Detail & Related papers (2024-01-18T20:10:28Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Quantum simulation of antiferromagnetic Heisenberg chain with
gate-defined quantum dots [0.0]
Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model.
We show the quantum simulation of magnetism in the Mott-insulator regime with a linear quantum-dot array.
arXiv Detail & Related papers (2021-03-15T09:45:02Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Simulation of higher-order topological phases in 2D spin-phononic
crystal networks [15.41200827860072]
We propose and analyse an efficient scheme for simulating higher-order topological phases of matter in two dimensional (2D) spin-phononic crystal networks.
We show that, through a specially designed periodic driving, one can selectively control and enhance the bipartite silicon-vacancy (SiV) center arrays.
In momentum space, we analyze and simulate the topological nontrivial properties of the one- and two-dimensional system.
arXiv Detail & Related papers (2020-04-17T03:24:53Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.