Evolving Benchmark Functions to Compare Evolutionary Algorithms via Genetic Programming
- URL: http://arxiv.org/abs/2403.14146v1
- Date: Thu, 21 Mar 2024 05:42:17 GMT
- Title: Evolving Benchmark Functions to Compare Evolutionary Algorithms via Genetic Programming
- Authors: Yifan He, Claus Aranha,
- Abstract summary: We use Genetic Programming (GP) to compose new optimization benchmark functions.
We show that the benchmarks generated by GP are able to differentiate algorithms better than human-made benchmark functions.
- Score: 3.838204385427238
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this study, we use Genetic Programming (GP) to compose new optimization benchmark functions. Optimization benchmarks have the important role of showing the differences between evolutionary algorithms, making it possible for further analysis and comparisons. We show that the benchmarks generated by GP are able to differentiate algorithms better than human-made benchmark functions. The fitness measure of the GP is the Wasserstein distance of the solutions found by a pair of optimizers. Additionally, we use MAP-Elites to both enhance the search power of the GP and also illustrate how the difference between optimizers changes by various landscape features. Our approach provides a novel way to automate the design of benchmark functions and to compare evolutionary algorithms.
Related papers
- GPU Based Differential Evolution: New Insights and Comparative Study [7.5961910202572644]
This work reviews the main architectural choices made in the literature for GPU based Differential Evolution algorithms.
It introduces a new GPU based numerical optimisation benchmark to evaluate and compare GPU based DE algorithms.
arXiv Detail & Related papers (2024-05-26T12:40:39Z) - Performance Evaluation of Evolutionary Algorithms for Analog Integrated
Circuit Design Optimisation [0.0]
An automated sizing approach for analog circuits is presented in this paper.
A targeted search of the search space has been implemented using a particle generation function and a repair-bounds function.
The algorithms are tuned and modified to converge to a better optimal solution.
arXiv Detail & Related papers (2023-10-19T03:26:36Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
We present the first efficient scalable and general framework that can directly search on the tasks of interest.
Inspired by the innate tree structure of the underlying math expressions, we re-arrange the spaces into a super-tree.
We adopt an adaptation of the Monte Carlo method to tree search, equipped with rejection sampling and equivalent- form detection.
arXiv Detail & Related papers (2022-09-27T17:51:31Z) - Towards Learning Universal Hyperparameter Optimizers with Transformers [57.35920571605559]
We introduce the OptFormer, the first text-based Transformer HPO framework that provides a universal end-to-end interface for jointly learning policy and function prediction.
Our experiments demonstrate that the OptFormer can imitate at least 7 different HPO algorithms, which can be further improved via its function uncertainty estimates.
arXiv Detail & Related papers (2022-05-26T12:51:32Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
We propose a new benchmark of applying reinforcement learning to RNA sequence design, in which the objective function is defined to be the free energy in the sequence's secondary structure.
We show results of the ablation analysis that we do for these algorithms, as well as graphs indicating the algorithm's performance across batches.
arXiv Detail & Related papers (2021-11-05T02:54:06Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - On the Assessment of Benchmark Suites for Algorithm Comparison [7.501426386641256]
We show that most benchmark functions of BBOB suite have high difficulty levels (compared to the optimization algorithms) and low discrimination.
We discuss potential uses of IRT in benchmarking, including its use to improve the design of benchmark suites.
arXiv Detail & Related papers (2021-04-15T11:20:11Z) - Optimizing the Parameters of A Physical Exercise Dose-Response Model: An
Algorithmic Comparison [1.0152838128195467]
The purpose of this research was to compare the robustness and performance of a local and global optimization algorithm when given the task of fitting the parameters of a common non-linear dose-response model utilized in the field of exercise physiology.
The results of our comparison over 1000 experimental runs demonstrate the superior performance of the evolutionary computation based algorithm to consistently achieve a stronger model fit and holdout performance in comparison to the local search algorithm.
arXiv Detail & Related papers (2020-12-16T22:06:35Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - On the Performance of Metaheuristics: A Different Perspective [0.0]
We study some basic evolutionary and swam-intelligence metaheuristics i.e. Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Teaching-Learning-Based Optimization (TLBO) and Cuckoo Optimization algorithm (COA)
A large number of experiments have been conducted on 20 different optimization benchmark functions with different characteristics, and the results reveal to us some fundamental conclusions besides the following ranking order among these metaheuristics.
arXiv Detail & Related papers (2020-01-24T09:34:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.