GPU Based Differential Evolution: New Insights and Comparative Study
- URL: http://arxiv.org/abs/2405.16551v1
- Date: Sun, 26 May 2024 12:40:39 GMT
- Title: GPU Based Differential Evolution: New Insights and Comparative Study
- Authors: Dylan Janssen, Wayne Pullan, Alan Wee-Chung Liew,
- Abstract summary: This work reviews the main architectural choices made in the literature for GPU based Differential Evolution algorithms.
It introduces a new GPU based numerical optimisation benchmark to evaluate and compare GPU based DE algorithms.
- Score: 7.5961910202572644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differential Evolution (DE) is a highly successful population based global optimisation algorithm, commonly used for solving numerical optimisation problems. However, as the complexity of the objective function increases, the wall-clock run-time of the algorithm suffers as many fitness function evaluations must take place to effectively explore the search space. Due to the inherently parallel nature of the DE algorithm, graphics processing units (GPU) have been used to effectively accelerate both the fitness evaluation and DE algorithm. This work reviews the main architectural choices made in the literature for GPU based DE algorithms and introduces a new GPU based numerical optimisation benchmark to evaluate and compare GPU based DE algorithms.
Related papers
- Implementation and Analysis of GPU Algorithms for Vecchia Approximation [0.8057006406834466]
Vecchia Approximation is widely used to reduce the computational complexity and can be calculated with embarrassingly parallel algorithms.
While multi-core software has been developed for Vecchia Approximation, software designed to run on graphics processing units ( GPU) is lacking.
We show that our new method outperforms the other two and then present it in the GpGpU R package.
arXiv Detail & Related papers (2024-07-03T01:24:44Z) - Performance Evaluation of Evolutionary Algorithms for Analog Integrated
Circuit Design Optimisation [0.0]
An automated sizing approach for analog circuits is presented in this paper.
A targeted search of the search space has been implemented using a particle generation function and a repair-bounds function.
The algorithms are tuned and modified to converge to a better optimal solution.
arXiv Detail & Related papers (2023-10-19T03:26:36Z) - Improving the Efficiency of Gradient Descent Algorithms Applied to
Optimization Problems with Dynamical Constraints [3.3722008527102894]
We introduce two block coordinate descent algorithms for solving optimization problems with ordinary differential equations.
The algorithms do not need to implement direct or adjoint sensitivity analysis methods to evaluate loss function gradients.
arXiv Detail & Related papers (2022-08-26T18:26:50Z) - Implementation of Parallel Simplified Swarm Optimization in CUDA [2.322689362836168]
In optimization computing, intelligent swarm algorithms (SIAs) method is suitable for parallelization.
This paper proposed a GPU-based Simplified Swarm Algorithm Optimization (PSSO) based on the platform considering computational ability and versatility.
As the results showed, the time complexity has successfully reduced by an order of magnitude of N, and the problem of resource preemption was avoided entirely.
arXiv Detail & Related papers (2021-10-01T00:15:45Z) - An Accelerated Variance-Reduced Conditional Gradient Sliding Algorithm
for First-order and Zeroth-order Optimization [111.24899593052851]
Conditional gradient algorithm (also known as the Frank-Wolfe algorithm) has recently regained popularity in the machine learning community.
ARCS is the first zeroth-order conditional gradient sliding type algorithms solving convex problems in zeroth-order optimization.
In first-order optimization, the convergence results of ARCS substantially outperform previous algorithms in terms of the number of gradient query oracle.
arXiv Detail & Related papers (2021-09-18T07:08:11Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
Kernel methods provide an elegant and principled approach to nonparametric learning, but so far could hardly be used in large scale problems.
Recent advances have shown the benefits of a number of algorithmic ideas, for example combining optimization, numerical linear algebra and random projections.
Here, we push these efforts further to develop and test a solver that takes full advantage of GPU hardware.
arXiv Detail & Related papers (2020-06-18T08:16:25Z) - MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical
Models [96.1052289276254]
This work introduces a new MAP-solver, based on the popular Dual Block-Coordinate Ascent principle.
Surprisingly, by making a small change to the low-performing solver, we derive the new solver MPLP++ that significantly outperforms all existing solvers by a large margin.
arXiv Detail & Related papers (2020-04-16T16:20:53Z) - A survey on dragonfly algorithm and its applications in engineering [29.190512851078218]
The dragonfly algorithm was developed in 2016. It is one of the algorithms used by researchers to optimize an extensive series of uses and applications in various areas.
This work addressed the robustness of the method to solve real-world optimization issues, and its deficiency to improve complex optimization problems.
arXiv Detail & Related papers (2020-02-19T20:23:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.