論文の概要: Leveraging Large Language Model-based Room-Object Relationships Knowledge for Enhancing Multimodal-Input Object Goal Navigation
- arxiv url: http://arxiv.org/abs/2403.14163v1
- Date: Thu, 21 Mar 2024 06:32:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 15:17:21.779978
- Title: Leveraging Large Language Model-based Room-Object Relationships Knowledge for Enhancing Multimodal-Input Object Goal Navigation
- Title(参考訳): 大規模言語モデルに基づくマルチモーダル入力目標ナビゲーションのためのルームオブジェクト関係知識の活用
- Authors: Leyuan Sun, Asako Kanezaki, Guillaume Caron, Yusuke Yoshiyasu,
- Abstract要約: 大規模言語モデルから抽出したオブジェクト間関係の共通知識を組み込んだデータセットに基づいて,データ駆動型モジュール型アプローチを提案する。
Habitatシミュレーターの結果、我々のフレームワークは平均10.6%の効率でベースラインを上回り、Path Length(SPL)が重み付けした成功(Success)を実証した。
- 参考スコア(独自算出の注目度): 11.510823733292519
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object-goal navigation is a crucial engineering task for the community of embodied navigation; it involves navigating to an instance of a specified object category within unseen environments. Although extensive investigations have been conducted on both end-to-end and modular-based, data-driven approaches, fully enabling an agent to comprehend the environment through perceptual knowledge and perform object-goal navigation as efficiently as humans remains a significant challenge. Recently, large language models have shown potential in this task, thanks to their powerful capabilities for knowledge extraction and integration. In this study, we propose a data-driven, modular-based approach, trained on a dataset that incorporates common-sense knowledge of object-to-room relationships extracted from a large language model. We utilize the multi-channel Swin-Unet architecture to conduct multi-task learning incorporating with multimodal inputs. The results in the Habitat simulator demonstrate that our framework outperforms the baseline by an average of 10.6% in the efficiency metric, Success weighted by Path Length (SPL). The real-world demonstration shows that the proposed approach can efficiently conduct this task by traversing several rooms. For more details and real-world demonstrations, please check our project webpage (https://sunleyuan.github.io/ObjectNav).
- Abstract(参考訳): オブジェクトゴールナビゲーションは、具体的ナビゲーションのコミュニティにとって重要なエンジニアリングタスクである。
エンド・ツー・エンド・エンド・ツー・エンド・エンドとモジュラー・ベースのデータ駆動型アプローチの両方について広範な調査が行われてきたが、エージェントが知覚的知識を通じて環境を理解でき、人間と同じくらい効率的に目標のナビゲーションを実行できることは大きな課題である。
近年、知識抽出と統合のための強力な能力のおかげで、大きな言語モデルがこのタスクに可能性を示している。
本研究では,大規模言語モデルから抽出したオブジェクト間関係の共通知識を組み込んだデータセットに基づいて,データ駆動型モジュール型アプローチを提案する。
マルチチャネルSwin-Unetアーキテクチャを用いてマルチモーダル入力を組み込んだマルチタスク学習を行う。
Habitatシミュレーターの結果、我々のフレームワークは平均10.6%の効率でベースラインを上回り、Path Length(SPL)が重み付けした成功(Success)を実証した。
実世界の実演では、提案手法が複数の部屋を横断することで効率よくこの課題を遂行できることが示されている。
詳細と実世界のデモについては、プロジェクトのWebページ(https://sunleyuan.github.io/ObjectNav)を参照してください。
関連論文リスト
- General Object Foundation Model for Images and Videos at Scale [99.2806103051613]
本稿では,画像やビデオ中の物体の位置と識別のためのオブジェクトレベルの基礎モデルであるGLEEを提案する。
GLEEは、オープンワールドシナリオにおける任意のオブジェクトの検出、セグメンテーション、トラッキング、グラウンド、識別を達成する。
画像エンコーダ,テキストエンコーダ,視覚プロンプトを用いて複数モーダル入力を処理し,様々なオブジェクト中心の下流タスクを同時に解決する。
論文 参考訳(メタデータ) (2023-12-14T17:26:00Z) - Towards Learning a Generalist Model for Embodied Navigation [24.816490551945435]
そこで本研究では,NaviLLM を具体化するための最初のジェネラリストモデルを提案する。
スキーマベースの命令を導入することで、LCMをナビゲーションの具体化に適応する。
我々は,モデルの性能と一般化性を評価するため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-12-04T16:32:51Z) - SayNav: Grounding Large Language Models for Dynamic Planning to Navigation in New Environments [14.179677726976056]
SayNavは、Large Language Models(LLM)からの人間の知識を活用して、複雑なナビゲーションタスクを効率的に一般化する新しいアプローチである。
SayNavは最先端の結果を達成し、成功率の点で強烈な地道的な仮定でオラクルベースのベースラインを8%以上上回ります。
論文 参考訳(メタデータ) (2023-09-08T02:24:37Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
本研究の目的は, 細粒度製品カテゴリを対象とした, 弱制御型マルチモーダル・インスタンスレベルの製品検索である。
まず、Product1Mデータセットをコントリビュートし、2つの実際のインスタンスレベルの検索タスクを定義します。
我々は、マルチモーダルデータから重要な概念情報を組み込むことができるより効果的なクロスモーダルモデルを訓練するために活用する。
論文 参考訳(メタデータ) (2022-06-17T15:40:45Z) - Zero Experience Required: Plug & Play Modular Transfer Learning for
Semantic Visual Navigation [97.17517060585875]
新たなモジュール移動学習モデルを用いて視覚ナビゲーションに統一的な手法を提案する。
我々のモデルは、1つのソースタスクから経験を効果的に活用し、複数のターゲットタスクに適用することができる。
我々のアプローチはより速く学習し、より良く一般化し、大きなマージンでSoTAモデルを上回っます。
論文 参考訳(メタデータ) (2022-02-05T00:07:21Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
本稿では,タスク非依存ストレージから取得したMBRLエージェントのトレーニングサンプルを提供するRAMaというメタ学習型アドレッシングモデルを提案する。
このモデルは、期待されるエージェントのパフォーマンスを最大化するために、ストレージから事前のタスクを解く有望な軌道を選択することで訓練される。
論文 参考訳(メタデータ) (2021-10-25T20:02:57Z) - Landmark Policy Optimization for Object Navigation Task [77.34726150561087]
本研究は,未確認環境において,与えられたセマンティックカテゴリに関連する最も近いオブジェクトにナビゲートするオブジェクトゴールナビゲーションタスクについて研究する。
最近の研究は、エンドツーエンドの強化学習アプローチとモジュールシステムの両方において大きな成果を上げていますが、堅牢で最適なものにするには大きな前進が必要です。
本稿では,これらのランドマークを抽出する手法として,標準的なタスクの定式化とランドマークとしての付加的な地域知識を取り入れた階層的手法を提案する。
論文 参考訳(メタデータ) (2021-09-17T12:28:46Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
本研究は,未確認環境における対象カテゴリーのインスタンスにナビゲートするオブジェクトゴールナビゲーションの問題を研究する。
本稿では,表層的なセマンティックマップを構築し,効率的に環境を探索する「ゴール指向セマンティック探索」というモジュールシステムを提案する。
論文 参考訳(メタデータ) (2020-07-01T17:52:32Z) - Learning hierarchical relationships for object-goal navigation [7.074818959144171]
室内におけるナビゲーションのためのメモリ利用共同階層型物体学習(MJOLNIR)を提案する。
MJOLNIRはターゲット駆動ナビゲーションアルゴリズムであり、ターゲットオブジェクトと周囲に存在するより健全なコンテキストオブジェクトの間に固有の関係を考察する。
我々のモデルは、よく知られた過適合問題に悩まされることなく、他のアルゴリズムよりもはるかに早く収束することを学ぶ。
論文 参考訳(メタデータ) (2020-03-15T04:01:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。