Leveraging Large Language Model-based Room-Object Relationships Knowledge for Enhancing Multimodal-Input Object Goal Navigation
- URL: http://arxiv.org/abs/2403.14163v1
- Date: Thu, 21 Mar 2024 06:32:36 GMT
- Title: Leveraging Large Language Model-based Room-Object Relationships Knowledge for Enhancing Multimodal-Input Object Goal Navigation
- Authors: Leyuan Sun, Asako Kanezaki, Guillaume Caron, Yusuke Yoshiyasu,
- Abstract summary: We propose a data-driven, modular-based approach, trained on a dataset that incorporates common-sense knowledge of object-to-room relationships extracted from a large language model.
The results in the Habitat simulator demonstrate that our framework outperforms the baseline by an average of 10.6% in the efficiency metric, Success weighted by Path Length (SPL).
- Score: 11.510823733292519
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object-goal navigation is a crucial engineering task for the community of embodied navigation; it involves navigating to an instance of a specified object category within unseen environments. Although extensive investigations have been conducted on both end-to-end and modular-based, data-driven approaches, fully enabling an agent to comprehend the environment through perceptual knowledge and perform object-goal navigation as efficiently as humans remains a significant challenge. Recently, large language models have shown potential in this task, thanks to their powerful capabilities for knowledge extraction and integration. In this study, we propose a data-driven, modular-based approach, trained on a dataset that incorporates common-sense knowledge of object-to-room relationships extracted from a large language model. We utilize the multi-channel Swin-Unet architecture to conduct multi-task learning incorporating with multimodal inputs. The results in the Habitat simulator demonstrate that our framework outperforms the baseline by an average of 10.6% in the efficiency metric, Success weighted by Path Length (SPL). The real-world demonstration shows that the proposed approach can efficiently conduct this task by traversing several rooms. For more details and real-world demonstrations, please check our project webpage (https://sunleyuan.github.io/ObjectNav).
Related papers
- General Object Foundation Model for Images and Videos at Scale [99.2806103051613]
We present GLEE, an object-level foundation model for locating and identifying objects in images and videos.
GLEE accomplishes detection, segmentation, tracking, grounding, and identification of arbitrary objects in the open world scenario.
We employ an image encoder, text encoder, and visual prompter to handle multi-modal inputs, enabling to simultaneously solve various object-centric downstream tasks.
arXiv Detail & Related papers (2023-12-14T17:26:00Z) - Towards Learning a Generalist Model for Embodied Navigation [24.816490551945435]
We propose the first generalist model for embodied navigation, NaviLLM.
It adapts LLMs to embodied navigation by introducing schema-based instruction.
We conduct extensive experiments to evaluate the performance and generalizability of our model.
arXiv Detail & Related papers (2023-12-04T16:32:51Z) - SayNav: Grounding Large Language Models for Dynamic Planning to Navigation in New Environments [14.179677726976056]
SayNav is a new approach that leverages human knowledge from Large Language Models (LLMs) for efficient generalization to complex navigation tasks.
SayNav achieves state-of-the-art results and even outperforms an oracle based baseline with strong ground-truth assumptions by more than 8% in terms of success rate.
arXiv Detail & Related papers (2023-09-08T02:24:37Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
This research aims to conduct weakly-supervised multi-modal instance-level product retrieval for fine-grained product categories.
We first contribute the Product1M datasets, and define two real practical instance-level retrieval tasks.
We exploit to train a more effective cross-modal model which is adaptively capable of incorporating key concept information from the multi-modal data.
arXiv Detail & Related papers (2022-06-17T15:40:45Z) - Zero Experience Required: Plug & Play Modular Transfer Learning for
Semantic Visual Navigation [97.17517060585875]
We present a unified approach to visual navigation using a novel modular transfer learning model.
Our model can effectively leverage its experience from one source task and apply it to multiple target tasks.
Our approach learns faster, generalizes better, and outperforms SoTA models by a significant margin.
arXiv Detail & Related papers (2022-02-05T00:07:21Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - Landmark Policy Optimization for Object Navigation Task [77.34726150561087]
This work studies object goal navigation task, which involves navigating to the closest object related to the given semantic category in unseen environments.
Recent works have shown significant achievements both in the end-to-end Reinforcement Learning approach and modular systems, but need a big step forward to be robust and optimal.
We propose a hierarchical method that incorporates standard task formulation and additional area knowledge as landmarks, with a way to extract these landmarks.
arXiv Detail & Related papers (2021-09-17T12:28:46Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
This work studies the problem of object goal navigation which involves navigating to an instance of the given object category in unseen environments.
We propose a modular system called, Goal-Oriented Semantic Exploration' which builds an episodic semantic map and uses it to explore the environment efficiently.
arXiv Detail & Related papers (2020-07-01T17:52:32Z) - Learning hierarchical relationships for object-goal navigation [7.074818959144171]
We present Memory-utilized Joint hierarchical Object Learning for Navigation in Indoor Rooms (MJOLNIR)
MJOLNIR is a target-driven navigation algorithm, which considers the inherent relationship between target objects, and the more salient contextual objects occurring in its surrounding.
Our model learns to converge much faster than other algorithms, without suffering from the well-known overfitting problem.
arXiv Detail & Related papers (2020-03-15T04:01:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.