論文の概要: LayoutLLM: Large Language Model Instruction Tuning for Visually Rich Document Understanding
- arxiv url: http://arxiv.org/abs/2403.14252v1
- Date: Thu, 21 Mar 2024 09:25:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 14:48:00.569705
- Title: LayoutLLM: Large Language Model Instruction Tuning for Visually Rich Document Understanding
- Title(参考訳): LayoutLLM: 視覚的にリッチなドキュメント理解のための大規模言語モデルインストラクションチューニング
- Authors: Masato Fujitake,
- Abstract要約: 本稿では,より柔軟な画像文書解析手法であるLayoutLLMを提案する。
画像,テキスト,レイアウト構造を事前学習することで,文書の理解を高める手法が開発されている。
本実験は,文書解析タスクにおけるベースラインモデルの改善を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes LayoutLLM, a more flexible document analysis method for understanding imaged documents. Visually Rich Document Understanding tasks, such as document image classification and information extraction, have gained significant attention due to their importance. Existing methods have been developed to enhance document comprehension by incorporating pre-training awareness of images, text, and layout structure. However, these methods require fine-tuning for each task and dataset, and the models are expensive to train and operate. To overcome this limitation, we propose a new LayoutLLM that integrates these with large-scale language models (LLMs). By leveraging the strengths of existing research in document image understanding and LLMs' superior language understanding capabilities, the proposed model, fine-tuned with multimodal instruction datasets, performs an understanding of document images in a single model. Our experiments demonstrate improvement over the baseline model in various document analysis tasks.
- Abstract(参考訳): 本稿では,より柔軟な画像文書解析手法であるLayoutLLMを提案する。
文書画像分類や情報抽出といった視覚的にリッチな文書理解タスクは,その重要性から注目されている。
画像,テキスト,レイアウト構造を事前学習することで,文書の理解を高める手法が開発されている。
しかしながら、これらの方法は各タスクとデータセットの微調整を必要とし、モデルはトレーニングと運用に費用がかかる。
この制限を克服するため,大規模言語モデル(LLM)と統合したLayoutLLMを提案する。
文書画像理解とLLMの優れた言語理解能力に関する既存の研究の強みを生かして、マルチモーダルな命令データセットで微調整された提案モデルは、単一のモデルで文書画像の理解を行う。
本実験は,文書解析タスクにおけるベースラインモデルの改善を実証する。
関連論文リスト
- mPLUG-DocOwl2: High-resolution Compressing for OCR-free Multi-page Document Understanding [103.05835688963947]
本稿では,高解像度文書画像を324個のトークンに圧縮する高解像度DocCompressorモジュールを提案する。
DocOwl2は、マルチページ文書理解ベンチマークにまたがる最先端の新たなベンチマークを設定し、最初のトークンレイテンシを50%以上削減する。
同様のデータで訓練されたシングルイメージMLLMと比較して、DocOwl2はビジュアルトークンの20%未満で、同等のシングルページ理解性能を実現しています。
論文 参考訳(メタデータ) (2024-09-05T11:09:00Z) - HRVDA: High-Resolution Visual Document Assistant [32.51417315241559]
本稿では,MLLMと視覚文書理解のギャップを埋めるための高解像度ビジュアルドキュメントアシスタント(HRVDA)を提案する。
HRVDAはコンテンツフィルタリング機構と命令フィルタリングモジュールを使用して、コンテンツに依存しないビジュアルトークンと命令に依存しないビジュアルトークンをフィルタリングする。
本モデルは,複数の文書理解データセットにまたがる最先端性能を実現する。
論文 参考訳(メタデータ) (2024-04-10T11:10:50Z) - mPLUG-DocOwl 1.5: Unified Structure Learning for OCR-free Document Understanding [100.17063271791528]
MLLMの性能向上を目的とした統一構造学習を提案する。
我々のモデルDocOwl 1.5は、10のビジュアル文書理解ベンチマーク上で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-03-19T16:48:40Z) - Hierarchical Multimodal Pre-training for Visually Rich Webpage
Understanding [22.00873805952277]
WebLMは、WebページにおけるHTMLの構造的モダリティとテキストのみをモデリングする制限に対処するために設計されたマルチモーダル事前学習ネットワークである。
本稿では,テキスト,構造,画像モダリティ間の相互作用を効果的にモデル化するための事前学習タスクを提案する。
実験の結果、事前学習されたWebLMは、いくつかのWebページ理解タスクにおいて、従来の最先端の事前学習モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-02-28T11:50:36Z) - Position-Enhanced Visual Instruction Tuning for Multimodal Large
Language Models [50.07056960586183]
MLLM(Multimodal Large Language Models)の機能を拡張するために, PVIT( Position-enhanced Visual Instruction Tuning)を提案する。
この統合により、MLLMの画像のより詳細な理解が促進される。
本稿では,提案モデルの優位性を示す定量的実験と定性解析の両方について述べる。
論文 参考訳(メタデータ) (2023-08-25T15:33:47Z) - Enhancing Visually-Rich Document Understanding via Layout Structure
Modeling [91.07963806829237]
レイアウトの知識をモデルに注入する新しい文書理解モデルであるGraphLMを提案する。
我々は、FUNSD、XFUND、CORDなど様々なベンチマークでモデルを評価し、最先端の結果を得た。
論文 参考訳(メタデータ) (2023-08-15T13:53:52Z) - mPLUG-DocOwl: Modularized Multimodal Large Language Model for Document
Understanding [55.4806974284156]
文書理解とは、ウェブページのようなデジタル文書から自動的に情報を抽出し、分析し、理解することである。
既存のMLLM(Multi-model Large Language Models)は、浅いOCRフリーテキスト認識において、望ましくないゼロショット機能を実証している。
論文 参考訳(メタデータ) (2023-07-04T11:28:07Z) - Unified Pretraining Framework for Document Understanding [52.224359498792836]
文書理解のための統合事前学習フレームワークであるUDocを紹介する。
UDocは、ほとんどのドキュメント理解タスクをサポートするように設計されており、Transformerを拡張してマルチモーダル埋め込みを入力とする。
UDocの重要な特徴は、3つの自己管理的損失を利用して汎用的な表現を学ぶことである。
論文 参考訳(メタデータ) (2022-04-22T21:47:04Z) - Towards a Multi-modal, Multi-task Learning based Pre-training Framework
for Document Representation Learning [5.109216329453963]
本稿では,新しい事前学習タスクとして,文書トピックモデリングと文書シャッフル予測を導入する。
本稿では,Longformer ネットワークアーキテクチャをバックボーンとして,複数ページの文書からのマルチモーダル情報をエンド・ツー・エンドで符号化する。
論文 参考訳(メタデータ) (2020-09-30T05:39:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。