論文の概要: Relation-Rich Visual Document Generator for Visual Information Extraction
- arxiv url: http://arxiv.org/abs/2504.10659v1
- Date: Mon, 14 Apr 2025 19:19:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 22:10:10.984501
- Title: Relation-Rich Visual Document Generator for Visual Information Extraction
- Title(参考訳): 視覚情報抽出のためのリレーショナルリッチビジュアルドキュメンテーション生成装置
- Authors: Zi-Han Jiang, Chien-Wei Lin, Wei-Hua Li, Hsuan-Tung Liu, Yi-Ren Yeh, Chu-Song Chen,
- Abstract要約: 本稿では2段階のアプローチでこれらの制限に対処するリレーショナルrIchビジュアルドキュメンテーション・ジェネレータ(RIDGE)を提案する。
提案手法は,様々なVIEベンチマークにおける文書理解モデルの性能を大幅に向上させる。
- 参考スコア(独自算出の注目度): 12.4941229258054
- License:
- Abstract: Despite advances in Large Language Models (LLMs) and Multimodal LLMs (MLLMs) for visual document understanding (VDU), visual information extraction (VIE) from relation-rich documents remains challenging due to the layout diversity and limited training data. While existing synthetic document generators attempt to address data scarcity, they either rely on manually designed layouts and templates, or adopt rule-based approaches that limit layout diversity. Besides, current layout generation methods focus solely on topological patterns without considering textual content, making them impractical for generating documents with complex associations between the contents and layouts. In this paper, we propose a Relation-rIch visual Document GEnerator (RIDGE) that addresses these limitations through a two-stage approach: (1) Content Generation, which leverages LLMs to generate document content using a carefully designed Hierarchical Structure Text format which captures entity categories and relationships, and (2) Content-driven Layout Generation, which learns to create diverse, plausible document layouts solely from easily available Optical Character Recognition (OCR) results, requiring no human labeling or annotations efforts. Experimental results have demonstrated that our method significantly enhances the performance of document understanding models on various VIE benchmarks. The code and model will be available at https://github.com/AI-Application-and-Integration-Lab/RIDGE .
- Abstract(参考訳): 視覚文書理解(VDU)のためのLarge Language Models(LLM)とMultimodal LLMs(MLLM)の進歩にもかかわらず、レイアウトの多様性と限られたトレーニングデータのために、関係豊富な文書からの視覚情報抽出(VIE)は依然として困難である。
既存の合成ドキュメントジェネレータはデータの不足に対処しようとするが、手動で設計したレイアウトとテンプレートに依存するか、レイアウトの多様性を制限するルールベースのアプローチを採用する。
さらに、現在のレイアウト生成手法は、テキストの内容を考慮することなく、トポロジカルなパターンにのみ焦点を合わせており、コンテンツとレイアウトの間に複雑な関連性を持つ文書を生成するには実用的ではない。
本稿では,2段階のアプローチでこれらの制限に対処するRelation-rIch visual Document GEnerator (RIDGE)を提案する。(1) 慎重に設計された階層構造テキストフォーマットを用いて,LCMを利用して文書コンテンツを生成するコンテンツ生成,(2) 容易に利用可能な光文字認識(OCR)結果のみから,多様な文書レイアウトを作成することを学ぶコンテンツ駆動レイアウト生成。
実験結果から,本手法は様々なVIEベンチマークにおける文書理解モデルの性能を大幅に向上させることが示された。
コードとモデルはhttps://github.com/AI-Application-and-Integration-Lab/RIDGEで入手できる。
関連論文リスト
- Towards Text-Image Interleaved Retrieval [49.96332254241075]
テキスト画像検索(TIIR)タスクを導入し、クエリと文書をインターリーブしたテキスト画像シーケンスとする。
我々は、自然にインターリーブされたwikiHowチュートリアルに基づいてTIIRベンチマークを構築し、インターリーブされたクエリを生成するために特定のパイプラインを設計する。
異なる粒度で視覚トークンの数を圧縮する新しいMMEを提案する。
論文 参考訳(メタデータ) (2025-02-18T12:00:47Z) - DocKD: Knowledge Distillation from LLMs for Open-World Document Understanding Models [66.91204604417912]
本研究の目的は,LLMの知識を蒸留することにより,小型VDUモデルの一般化性を高めることである。
我々は、外部文書知識を統合することでデータ生成プロセスを強化する新しいフレームワーク(DocKD)を提案する。
実験の結果,DocKDは高品質な文書アノテーションを生成し,直接知識蒸留手法を超越していることがわかった。
論文 参考訳(メタデータ) (2024-10-04T00:53:32Z) - Unified Multimodal Interleaved Document Representation for Retrieval [57.65409208879344]
複数のモダリティでインターリーブされた文書を階層的に埋め込む手法を提案する。
セグメント化されたパスの表現を1つのドキュメント表現にマージする。
我々は,本手法が関連するベースラインを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2024-10-03T17:49:09Z) - DocSynthv2: A Practical Autoregressive Modeling for Document Generation [43.84027661517748]
本稿では, 単純で効果的な自己回帰構造モデルの開発を通じて, Doc Synthv2と呼ばれる新しい手法を提案する。
我々のモデルは、レイアウトとテキストの両方を統合する点で際立ったものであり、既存のレイアウト生成アプローチを超える一歩を踏み出している。
論文 参考訳(メタデータ) (2024-06-12T16:00:16Z) - Visually Guided Generative Text-Layout Pre-training for Document Intelligence [51.09853181377696]
視覚誘導型生成テキスト事前学習(ViTLP)を提案する。
文書画像が与えられた場合、モデルは階層言語とレイアウトモデリングの目的を最適化し、インターリーブされたテキストとレイアウトシーケンスを生成する。
ViTLPは、文書画像のテキストをローカライズし、認識するためのネイティブなOCRモデルとして機能する。
論文 参考訳(メタデータ) (2024-03-25T08:00:43Z) - LayoutLLM: Large Language Model Instruction Tuning for Visually Rich Document Understanding [0.0]
本稿では,より柔軟な画像文書解析手法であるLayoutLLMを提案する。
画像,テキスト,レイアウト構造を事前学習することで,文書の理解を高める手法が開発されている。
本実験は,文書解析タスクにおけるベースラインモデルの改善を実証する。
論文 参考訳(メタデータ) (2024-03-21T09:25:24Z) - DocLLM: A layout-aware generative language model for multimodal document
understanding [12.093889265216205]
本稿では,従来の大規模言語モデル(LLM)の軽量拡張であるDocLLMについて述べる。
本モデルは,空間配置構造を組み込むための境界ボックス情報にのみ焦点をあてる。
我々のソリューションは、すべてのタスクにまたがる16のデータセットのうち14のデータセットでSotA LLMよりも優れており、これまで見つからなかった5つのデータセットのうち4のデータセットで十分に一般化されていることを実証しています。
論文 参考訳(メタデータ) (2023-12-31T22:37:52Z) - mPLUG-DocOwl: Modularized Multimodal Large Language Model for Document
Understanding [55.4806974284156]
文書理解とは、ウェブページのようなデジタル文書から自動的に情報を抽出し、分析し、理解することである。
既存のMLLM(Multi-model Large Language Models)は、浅いOCRフリーテキスト認識において、望ましくないゼロショット機能を実証している。
論文 参考訳(メタデータ) (2023-07-04T11:28:07Z) - VRDU: A Benchmark for Visually-rich Document Understanding [22.040372755535767]
より包括的なベンチマークのためのdesiderataを特定し、Visually Rich Document Understanding (VRDU)と呼ぶものを提案する。
多様なデータ型と階層的なエンティティを含むリッチスキーマ、テーブルやマルチカラムレイアウトを含む複雑なテンプレート、単一のドキュメントタイプ内のさまざまなレイアウト(テンプレート)の多様性。
提案手法は,抽出結果を評価するために慎重に設計されたマッチングアルゴリズムとともに,数ショットおよび従来型の実験環境を設計する。
論文 参考訳(メタデータ) (2022-11-15T03:17:07Z) - Multi-View Document Representation Learning for Open-Domain Dense
Retrieval [87.11836738011007]
本稿では,多視点文書表現学習フレームワークを提案する。
ドキュメントを表現し、異なるクエリに合わせるように強制するために、マルチビューの埋め込みを作成することを目的としている。
実験により,本手法は最近の成果より優れ,最先端の結果が得られた。
論文 参考訳(メタデータ) (2022-03-16T03:36:38Z) - Synthetic Document Generator for Annotation-free Layout Recognition [15.657295650492948]
本稿では,空間的位置,範囲,レイアウト要素のカテゴリを示すラベル付きリアル文書を自動生成する合成文書生成装置について述べる。
合成文書上で純粋に訓練された深層レイアウト検出モデルが,実文書を用いたモデルの性能と一致することを実証的に示す。
論文 参考訳(メタデータ) (2021-11-11T01:58:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。