論文の概要: DexDribbler: Learning Dexterous Soccer Manipulation via Dynamic Supervision
- arxiv url: http://arxiv.org/abs/2403.14300v1
- Date: Thu, 21 Mar 2024 11:16:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 14:38:14.958482
- Title: DexDribbler: Learning Dexterous Soccer Manipulation via Dynamic Supervision
- Title(参考訳): DexDribbler:動的スーパービジョンによるデクサラスサッカー操作の学習
- Authors: Yutong Hu, Kehan Wen, Fisher Yu,
- Abstract要約: 移動物体の協調操作と,サッカーなどの足による移動は,学習コミュニティにおいて目立たない注目を集める。
出力をダイナミックな関節レベル移動監視として使用し,必要な身体レベルの動きを正確に計算するフィードバック制御ブロックを提案する。
我々は,我々の学習手法が政策ネットワークをより早く収束させるだけでなく,サッカーロボットが高度な操作を行うことを可能にすることを観察した。
- 参考スコア(独自算出の注目度): 26.9579556496875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning dexterous locomotion policy for legged robots is becoming increasingly popular due to its ability to handle diverse terrains and resemble intelligent behaviors. However, joint manipulation of moving objects and locomotion with legs, such as playing soccer, receive scant attention in the learning community, although it is natural for humans and smart animals. A key challenge to solve this multitask problem is to infer the objectives of locomotion from the states and targets of the manipulated objects. The implicit relation between the object states and robot locomotion can be hard to capture directly from the training experience. We propose adding a feedback control block to compute the necessary body-level movement accurately and using the outputs as dynamic joint-level locomotion supervision explicitly. We further utilize an improved ball dynamic model, an extended context-aided estimator, and a comprehensive ball observer to facilitate transferring policy learned in simulation to the real world. We observe that our learning scheme can not only make the policy network converge faster but also enable soccer robots to perform sophisticated maneuvers like sharp cuts and turns on flat surfaces, a capability that was lacking in previous methods. Video and code are available at https://github.com/SysCV/soccer-player
- Abstract(参考訳): 多様な地形を処理し、知的な行動に類似しているため、足のついたロボットの巧妙な移動ポリシーを学習することは、ますます人気が高まっている。
しかし,移動物体の関節操作やサッカーなどの足の動きは,人間や賢い動物にとって自然なことではあるが,学習コミュニティでは注意をそらしている。
このマルチタスク問題を解決するための重要な課題は、操作対象の状態や目標から移動の目的を推測することである。
物体の状態とロボットの移動との暗黙の関係は、トレーニング経験から直接捉えることは困難である。
本稿では,身体の運動を正確に計算するためのフィードバック制御ブロックの追加を提案し,その出力を動的関節運動監視として用いた。
さらに,改良された球動モデル,拡張文脈支援型推定器,及び包括的球観測装置を応用して,シミュレーションで学習した実世界への移動政策を容易にする。
我々の学習手法は、ポリシーネットワークをより早く収束させるだけでなく、サッカーロボットが鋭い切断や平らな表面の旋回といった高度な操作を行うことを可能にする。
ビデオとコードはhttps://github.com/SysCV/soccer-playerで入手できる。
関連論文リスト
- Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
本稿では,二足歩行ロボットのための動的移動制御系を構築するために,深層強化学習を用いた研究について述べる。
本研究では、周期歩行やランニングから周期ジャンプや立位に至るまで、様々な動的二足歩行技術に使用できる汎用的な制御ソリューションを開発する。
この研究は、二足歩行ロボットの俊敏性の限界を、現実世界での広範な実験を通じて押し上げる。
論文 参考訳(メタデータ) (2024-01-30T10:48:43Z) - Barkour: Benchmarking Animal-level Agility with Quadruped Robots [70.97471756305463]
脚付きロボットのアジリティを定量化するための障害物コースであるBarkourベンチマークを導入する。
犬の機敏性の競争に触発され、様々な障害と時間に基づくスコアリング機構から構成される。
ベンチマークに対処する2つの方法を提案する。
論文 参考訳(メタデータ) (2023-05-24T02:49:43Z) - Learning Agile Soccer Skills for a Bipedal Robot with Deep Reinforcement Learning [26.13655448415553]
Deep Reinforcement Learning (Deep RL)は、低コストでミニチュアなヒューマノイドロボットのための洗練された安全な運動スキルを合成することができる。
我々はDeep RLを使って、20個の関節を持つヒューマノイドロボットを訓練し、1対1(1v1)のサッカーゲームを単純化した。
結果として得られるエージェントは、急激な転倒回復、歩行、回転、蹴りなど、堅牢でダイナミックな動きのスキルを示す。
論文 参考訳(メタデータ) (2023-04-26T16:25:54Z) - DribbleBot: Dynamic Legged Manipulation in the Wild [10.29780236909404]
DribbleBotは、人間と同じ現実の条件下でサッカーボールをドリブルするロボットシステムだ。
我々は、強化学習を用いたシミュレーションにおける訓練方針のパラダイムを採用し、それらを現実世界に伝達する。
論文 参考訳(メタデータ) (2023-04-03T17:26:09Z) - Legs as Manipulator: Pushing Quadrupedal Agility Beyond Locomotion [34.33972863987201]
我々は四足歩行ロボットを訓練し、前脚を使って壁を登り、ボタンを押し、現実世界でオブジェクトインタラクションを行う。
これらのスキルはカリキュラムを用いてシミュレーションで訓練され,提案したsim2real 変種を用いて実世界へ移行する。
我々は,本手法をシミュレーションと実世界の双方で評価し,短距離および長距離のタスクの実行を成功させたことを示す。
論文 参考訳(メタデータ) (2023-03-20T17:59:58Z) - Deep Whole-Body Control: Learning a Unified Policy for Manipulation and
Locomotion [25.35885216505385]
装着されたアームは、移動操作タスクへの脚付きロボットの適用性を著しく向上させることができる。
このような手足のマニピュレータのための標準的な階層制御パイプラインは、コントローラを操作と移動のものと分離することである。
我々は、強化学習を用いて、足のマニピュレータの全身制御のための統一的なポリシーを学習する。
論文 参考訳(メタデータ) (2022-10-18T17:59:30Z) - GraspARL: Dynamic Grasping via Adversarial Reinforcement Learning [16.03016392075486]
動的把握のための逆強化学習フレームワーク,すなわちGraspARLを導入する。
本研究では,ロボットが移動体上の物体を拾い上げ,対向移動体が逃走経路を見つける「移動・放浪」ゲームとして動的把握問題を定式化する。
このようにして、運動器はトレーニング中に様々な移動軌跡を自動生成することができる。また、対向軌道で訓練されたロボットは、様々な動きパターンに一般化することができる。
論文 参考訳(メタデータ) (2022-03-04T03:25:09Z) - A Differentiable Recipe for Learning Visual Non-Prehensile Planar
Manipulation [63.1610540170754]
視覚的非包括的平面操作の問題に焦点をあてる。
本稿では,ビデオデコードニューラルモデルと接触力学の先行情報を組み合わせた新しいアーキテクチャを提案する。
モジュラーで完全に差別化可能なアーキテクチャは、目に見えないオブジェクトやモーションの学習専用手法よりも優れていることが分かりました。
論文 参考訳(メタデータ) (2021-11-09T18:39:45Z) - Reinforcement Learning for Robust Parameterized Locomotion Control of
Bipedal Robots [121.42930679076574]
シミュレーションにおけるロコモーションポリシをトレーニングするためのモデルフリー強化学習フレームワークを提案する。
ドメインランダム化は、システムダイナミクスのバリエーションにまたがる堅牢な振る舞いを学ぶためのポリシーを奨励するために使用されます。
本研究では、目標歩行速度、歩行高さ、旋回ヨーなどの多目的歩行行動について示す。
論文 参考訳(メタデータ) (2021-03-26T07:14:01Z) - Learning Quadrupedal Locomotion over Challenging Terrain [68.51539602703662]
足の移動はロボティクスの操作領域を劇的に拡張することができる。
足の移動のための従来のコントローラーは、運動プリミティブと反射の実行を明示的にトリガーする精巧な状態マシンに基づいている。
ここでは、自然環境に挑戦する際の足の移動に対して、徹底的に頑健な制御器を提案する。
論文 参考訳(メタデータ) (2020-10-21T19:11:20Z) - Learning Agile Robotic Locomotion Skills by Imitating Animals [72.36395376558984]
動物の多様でアジャイルな運動スキルを再現することは、ロボット工学における長年の課題である。
そこで本研究では,現実世界の動物を模倣することで,足のロボットがアジャイルな運動能力を学ぶことができる模倣学習システムを提案する。
論文 参考訳(メタデータ) (2020-04-02T02:56:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。