論文の概要: Exosense: A Vision-Based Scene Understanding System For Exoskeletons
- arxiv url: http://arxiv.org/abs/2403.14320v2
- Date: Thu, 21 Nov 2024 12:29:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:15:53.081322
- Title: Exosense: A Vision-Based Scene Understanding System For Exoskeletons
- Title(参考訳): Exosense:外骨格を視覚で理解するシステム
- Authors: Jianeng Wang, Matias Mattamala, Christina Kassab, Guillaume Burger, Fabio Elnecave, Lintong Zhang, Marine Petriaux, Maurice Fallon,
- Abstract要約: 本稿では,自己バランス型外骨格のための視覚中心のシーン理解システムであるExosenseを紹介する。
実際の屋内シナリオでは、人間の脚に装着したExosenseとWandercraftのPersonal Exoskeletonをテストしました。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Self-balancing exoskeletons are a key enabling technology for individuals with mobility impairments. While the current challenges focus on human-compliant hardware and control, unlocking their use for daily activities requires a scene perception system. In this work, we present Exosense, a vision-centric scene understanding system for self-balancing exoskeletons. We introduce a multi-sensor visual-inertial mapping device as well as a navigation stack for state estimation, terrain mapping and long-term operation. We tested Exosense attached to both a human leg and Wandercraft's Personal Exoskeleton in real-world indoor scenarios. This enabled us to test the system during typical periodic walking gaits, as well as future uses in multi-story environments. We demonstrate that Exosense can achieve an odometry drift of about 4 cm per meter traveled, and construct terrain maps under 1 cm average reconstruction error. It can also work in a visual localization mode in a previously mapped environment, providing a step towards long-term operation of exoskeletons.
- Abstract(参考訳): 自己バランス型外骨格は、モビリティ障害を持つ個人にとって重要な技術である。
現在の課題は、人間に準拠したハードウェアとコントロールに重点を置いているが、日々の活動をアンロックするにはシーン認識システムが必要である。
本研究では,自己バランス型外骨格のための視覚中心のシーン理解システムであるExosenseを紹介する。
本稿では,複数センサの視覚-慣性マッピング装置と,状態推定,地形マッピング,長期運用のためのナビゲーションスタックを紹介する。
実際の屋内シナリオでは、人間の脚に装着したExosenseとWandercraftのPersonal Exoskeletonをテストしました。
これにより,典型的な周期歩行歩行時および多層歩行環境における将来的使用時のシステムテストが可能となった。
その結果,Exosenseは1メートルあたり約4cmのドリフトを達成でき,平均復元誤差1cm以下の地形図を構築できることがわかった。
以前マップされた環境で視覚的なローカライズモードでも動作し、エキソ骨格の長期動作に向けたステップを提供する。
関連論文リスト
- HOMIE: Humanoid Loco-Manipulation with Isomorphic Exoskeleton Cockpit [52.12750762494588]
現在のヒューマノイド遠隔操作システムは、信頼性の高い低レベル制御ポリシーを欠いているか、または正確な全身制御コマンドを取得するのに苦労している。
本稿では,ヒューマノイドのロコ操作ポリシと低コストなエクソスケルトン型ハードウェアシステムを統合した,新しいヒューマノイド遠隔操作コックピットを提案する。
論文 参考訳(メタデータ) (2025-02-18T16:33:38Z) - SPIN: Simultaneous Perception, Interaction and Navigation [33.408010508592824]
本稿では、アクティブな視覚システムを用いて、その環境を意識的に知覚し、反応するリアクティブなモバイル操作フレームワークを提案する。
人間は体全体と眼の調整を利用するのと同じように、移動と視力を利用する移動マニピュレータを開発します。
論文 参考訳(メタデータ) (2024-05-13T17:59:36Z) - EgoNav: Egocentric Scene-aware Human Trajectory Prediction [15.346096596482857]
ウェアラブルなコラボレーティブロボットは、転倒防止支援を必要とする人や、外骨格を装着する人を助ける。
このようなロボットは、自我中心の視覚に基づいて周囲のシーンに常に適応し、着用者の自我の動きを予測する必要がある。
本研究では、身体に装着したカメラとセンサーを利用して、複雑な環境下での人間の着用者の軌道を予測した。
論文 参考訳(メタデータ) (2024-03-27T21:43:12Z) - Augmented reality navigation system for visual prosthesis [67.09251544230744]
反応ナビゲーションと経路計画のソフトウェアを組み込んだ視覚補綴用拡張現実ナビゲーションシステムを提案する。
対象を地図上に配置し、対象の軌道を計画し、対象に示し、障害なく再計画する。
その結果,目標を達成するための時間と距離を減らし,障害物衝突の回数を大幅に減らし,航法性能の向上を図っている。
論文 参考訳(メタデータ) (2021-09-30T09:41:40Z) - Learning Perceptual Locomotion on Uneven Terrains using Sparse Visual
Observations [75.60524561611008]
この研究は、人中心の環境において、よく見られるバンプ、ランプ、階段の広い範囲にわたる知覚的移動を達成するために、スパースな視覚的観察の使用を活用することを目的としている。
まず、関心の均一な面を表すことのできる最小限の視覚入力を定式化し、このような外受容的・固有受容的データを統合した学習フレームワークを提案する。
本研究では, 平地を全方向歩行し, 障害物のある地形を前方移動させるタスクにおいて, 学習方針を検証し, 高い成功率を示す。
論文 参考訳(メタデータ) (2021-09-28T20:25:10Z) - Rapid Exploration for Open-World Navigation with Latent Goal Models [78.45339342966196]
多様なオープンワールド環境における自律的な探索とナビゲーションのためのロボット学習システムについて述べる。
本手法のコアとなるのは、画像の非パラメトリックトポロジカルメモリとともに、距離と行動の学習された潜在変数モデルである。
学習方針を規則化するために情報ボトルネックを使用し、(i)目標のコンパクトな視覚的表現、(ii)一般化能力の向上、(iii)探索のための実行可能な目標をサンプリングするためのメカニズムを提供する。
論文 参考訳(メタデータ) (2021-04-12T23:14:41Z) - Robot Perception enables Complex Navigation Behavior via Self-Supervised
Learning [23.54696982881734]
本稿では、強化学習(RL)によるアクティブな目標駆動ナビゲーションタスクのためのロボット認識システムの統合手法を提案する。
提案手法は,1つの画像列から直接自己スーパービジョンを用いて得られる,コンパクトな動きと視覚知覚データを時間的に組み込む。
我々は,新しいインタラクティブなCityLearnフレームワークを用いて,実世界の運転データセットであるKITTIとOxford RobotCarのアプローチを実証した。
論文 参考訳(メタデータ) (2020-06-16T07:45:47Z) - VisualEchoes: Spatial Image Representation Learning through Echolocation [97.23789910400387]
いくつかの動物種(コウモリ、イルカ、クジラなど)や視覚障害者さえもエコーロケーションを行う能力を持っている。
エコーロケーションを用いて有用な視覚特徴を学習する対話型表現学習フレームワークを提案する。
我々の研究は、物理的世界との相互作用によって監督される、エンボディエージェントのための表現学習の新しい道を開く。
論文 参考訳(メタデータ) (2020-05-04T16:16:58Z) - An Exploration of Embodied Visual Exploration [97.21890864063872]
身体的コンピュータビジョンは、新しい非構造環境におけるロボットに対する知覚を考慮に入れている。
既存の視覚探索アルゴリズムの分類を提示し、それらをベンチマークするための標準フレームワークを作成する。
次に,提案フレームワークを用いた4つの最先端パラダイムの徹底的な実証的研究を行った。
論文 参考訳(メタデータ) (2020-01-07T17:40:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。