CAGE: Unsupervised Visual Composition and Animation for Controllable Video Generation
- URL: http://arxiv.org/abs/2403.14368v2
- Date: Mon, 24 Mar 2025 14:21:55 GMT
- Title: CAGE: Unsupervised Visual Composition and Animation for Controllable Video Generation
- Authors: Aram Davtyan, Sepehr Sameni, Björn Ommer, Paolo Favaro,
- Abstract summary: We introduce an unsupervised approach to controllable and compositional video generation.<n>Our model is trained from scratch on a dataset of unannotated videos.<n>It can compose plausible novel scenes and animate objects by placing object parts at the desired locations in space and time.
- Score: 42.475807996071175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of video generation has expanded significantly in recent years, with controllable and compositional video generation garnering considerable interest. Most methods rely on leveraging annotations such as text, objects' bounding boxes, and motion cues, which require substantial human effort and thus limit their scalability. In contrast, we address the challenge of controllable and compositional video generation without any annotations by introducing a novel unsupervised approach. Our model is trained from scratch on a dataset of unannotated videos. At inference time, it can compose plausible novel scenes and animate objects by placing object parts at the desired locations in space and time. The core innovation of our method lies in the unified control format and the training process, where video generation is conditioned on a randomly selected subset of pre-trained self-supervised local features. This conditioning compels the model to learn how to inpaint the missing information in the video both spatially and temporally, thereby learning the inherent compositionality of a scene and the dynamics of moving objects. The abstraction level and the imposed invariance of the conditioning input to minor visual perturbations enable control over object motion by simply using the same features at all the desired future locations. We call our model CAGE, which stands for visual Composition and Animation for video GEneration. We conduct extensive experiments to validate the effectiveness of CAGE across various scenarios, demonstrating its capability to accurately follow the control and to generate high-quality videos that exhibit coherent scene composition and realistic animation.
Related papers
- Grounding Video Models to Actions through Goal Conditioned Exploration [29.050431676226115]
We propose a framework that uses trajectory level action generation in combination with video guidance to enable an agent to solve complex tasks.
We show how our approach is on par with or even surpasses multiple behavior cloning baselines trained on expert demonstrations.
arXiv Detail & Related papers (2024-11-11T18:43:44Z) - DreamVideo-2: Zero-Shot Subject-Driven Video Customization with Precise Motion Control [42.506988751934685]
We present DreamVideo-2, a zero-shot video customization framework capable of generating videos with a specific subject and motion trajectory.
Specifically, we introduce reference attention, which leverages the model's inherent capabilities for subject learning.
We devise a mask-guided motion module to achieve precise motion control by fully utilizing the robust motion signal of box masks.
arXiv Detail & Related papers (2024-10-17T17:52:57Z) - WildVidFit: Video Virtual Try-On in the Wild via Image-Based Controlled Diffusion Models [132.77237314239025]
Video virtual try-on aims to generate realistic sequences that maintain garment identity and adapt to a person's pose and body shape in source videos.
Traditional image-based methods, relying on warping and blending, struggle with complex human movements and occlusions.
We reconceptualize video try-on as a process of generating videos conditioned on garment descriptions and human motion.
Our solution, WildVidFit, employs image-based controlled diffusion models for a streamlined, one-stage approach.
arXiv Detail & Related papers (2024-07-15T11:21:03Z) - Controllable Longer Image Animation with Diffusion Models [12.565739255499594]
We introduce an open-domain controllable image animation method using motion priors with video diffusion models.
Our method achieves precise control over the direction and speed of motion in the movable region by extracting the motion field information from videos.
We propose an efficient long-duration video generation method based on noise reschedule specifically tailored for image animation tasks.
arXiv Detail & Related papers (2024-05-27T16:08:00Z) - Generating Human Interaction Motions in Scenes with Text Control [66.74298145999909]
We present TeSMo, a method for text-controlled scene-aware motion generation based on denoising diffusion models.
Our approach begins with pre-training a scene-agnostic text-to-motion diffusion model.
To facilitate training, we embed annotated navigation and interaction motions within scenes.
arXiv Detail & Related papers (2024-04-16T16:04:38Z) - Dense Video Object Captioning from Disjoint Supervision [77.47084982558101]
We propose a new task and model for dense video object captioning.
This task unifies spatial and temporal localization in video.
We show how our model improves upon a number of strong baselines for this new task.
arXiv Detail & Related papers (2023-06-20T17:57:23Z) - Learn the Force We Can: Enabling Sparse Motion Control in Multi-Object
Video Generation [26.292052071093945]
We propose an unsupervised method to generate videos from a single frame and a sparse motion input.
Our trained model can generate unseen realistic object-to-object interactions.
We show that YODA is on par with or better than state of the art video generation prior work in terms of both controllability and video quality.
arXiv Detail & Related papers (2023-06-06T19:50:02Z) - DynIBaR: Neural Dynamic Image-Based Rendering [79.44655794967741]
We address the problem of synthesizing novel views from a monocular video depicting a complex dynamic scene.
We adopt a volumetric image-based rendering framework that synthesizes new viewpoints by aggregating features from nearby views.
We demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets.
arXiv Detail & Related papers (2022-11-20T20:57:02Z) - InfiniteNature-Zero: Learning Perpetual View Generation of Natural
Scenes from Single Images [83.37640073416749]
We present a method for learning to generate flythrough videos of natural scenes starting from a single view.
This capability is learned from a collection of single photographs, without requiring camera poses or even multiple views of each scene.
arXiv Detail & Related papers (2022-07-22T15:41:06Z) - Playable Environments: Video Manipulation in Space and Time [98.0621309257937]
We present Playable Environments - a new representation for interactive video generation and manipulation in space and time.
With a single image at inference time, our novel framework allows the user to move objects in 3D while generating a video by providing a sequence of desired actions.
Our method builds an environment state for each frame, which can be manipulated by our proposed action module and decoded back to the image space with volumetric rendering.
arXiv Detail & Related papers (2022-03-03T18:51:05Z) - Unsupervised Object Learning via Common Fate [61.14802390241075]
Learning generative object models from unlabelled videos is a long standing problem and required for causal scene modeling.
We decompose this problem into three easier subtasks, and provide candidate solutions for each of them.
We show that our approach allows learning generative models that generalize beyond the occlusions present in the input videos.
arXiv Detail & Related papers (2021-10-13T08:22:04Z) - Weakly Supervised Human-Object Interaction Detection in Video via
Contrastive Spatiotemporal Regions [81.88294320397826]
A system does not know what human-object interactions are present in a video as or the actual location of the human and object.
We introduce a dataset comprising over 6.5k videos with human-object interaction that have been curated from sentence captions.
We demonstrate improved performance over weakly supervised baselines adapted to our annotations on our video dataset.
arXiv Detail & Related papers (2021-10-07T15:30:18Z) - First Order Motion Model for Image Animation [90.712718329677]
Image animation consists of generating a video sequence so that an object in a source image is animated according to the motion of a driving video.
Our framework addresses this problem without using any annotation or prior information about the specific object to animate.
arXiv Detail & Related papers (2020-02-29T07:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.