Krylov localization as a probe for ergodicity breaking
- URL: http://arxiv.org/abs/2403.14384v2
- Date: Tue, 16 Apr 2024 12:18:09 GMT
- Title: Krylov localization as a probe for ergodicity breaking
- Authors: Heiko Georg Menzler, Rishabh Jha,
- Abstract summary: We find a collapse across different system sizes at the point of weak ergodicity-breaking leading to a quantitative prediction.
Our findings open avenues for mapping ergodicity/weak ergodicity-breaking transitions to delocalization/localization phenomenology on the Krylov chain.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Krylov complexity has recently gained attention where the growth of operator complexity in time is measured in terms of the off-diagonal operator Lanczos coefficients. The operator Lanczos algorithm reduces the problem of complexity growth to a single-particle semi-infinite tight-binding chain (known as the Krylov chain). Employing the phenomenon of Anderson localization, we propose the inverse localization length on the Krylov chain as a probe to detect weak ergodicity-breaking. On the Krylov chain we find delocalization in an ergodic regime, as we show for the SYK model, and localization in case of a weakly ergodicity-broken regime. Considering the dynamics beyond scrambling, we find a collapse across different system sizes at the point of weak ergodicity-breaking leading to a quantitative prediction. We further show universal traits of different operators in the ergodic regime beyond the scrambling dynamics. We test for two settings: (1) the coupled SYK model, and (2) the quantum East model. Our findings open avenues for mapping ergodicity/weak ergodicity-breaking transitions to delocalization/localization phenomenology on the Krylov chain.
Related papers
- Diagnosing Quantum Many-body Chaos in Non-Hermitian Quantum Spin Chain via Krylov Complexity [15.406396871608624]
We investigate the phase transitions from chaotic to non-chaotic dynamics in a quantum spin chain with a local non-Hermitian disorder.
As the disorder strength increases, the emergence of non-chaotic dynamics is qualitatively captured through the suppressed growth of Krylov complexity.
arXiv Detail & Related papers (2025-01-27T12:09:49Z) - KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space [49.1574468325115]
We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
arXiv Detail & Related papers (2024-05-27T16:11:39Z) - Operator dynamics in Lindbladian SYK: a Krylov complexity perspective [0.0]
We analytically establish the linear growth of two sets of coefficients for any generic jump operators.
We find that the Krylov complexity saturates inversely with the dissipation strength, while the dissipative timescale grows logarithmically.
arXiv Detail & Related papers (2023-11-01T18:00:06Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Krylov Complexity in Calabi-Yau Quantum Mechanics [0.0]
We study Krylov complexity in quantum mechanical systems derived from some well-known local toric Calabi-Yau geometries.
We find that for the Calabi-Yau models, the Lanczos coefficients grow slower than linearly for small $n$'s, consistent with the behavior of integrable models.
arXiv Detail & Related papers (2022-12-06T12:32:04Z) - Dynamics with autoregressive neural quantum states: application to
critical quench dynamics [41.94295877935867]
We present an alternative general scheme that enables one to capture long-time dynamics of quantum systems in a stable fashion.
We apply the scheme to time-dependent quench dynamics by investigating the Kibble-Zurek mechanism in the two-dimensional quantum Ising model.
arXiv Detail & Related papers (2022-09-07T15:50:00Z) - Krylov Complexity in Open Quantum Systems [3.5895926924969404]
We show that Krylov complexity in open systems can be mapped to a non-hermitian tight-binding model in a half-infinite chain.
Our work provides insights for discussing complexity, chaos, and holography for open quantum systems.
arXiv Detail & Related papers (2022-07-27T16:03:41Z) - Krylov Localization and suppression of complexity [0.0]
We investigate Krylov complexity for the case of interacting integrable models at finite size.
We find that complexity saturation is suppressed as compared to chaotic systems.
We demonstrate this behavior for an interacting integrable model, the XXZ spin chain.
arXiv Detail & Related papers (2021-12-22T18:45:32Z) - Constraint-induced breaking and restoration of ergodicity in spin-1 PXP
models [0.0]
We show that miscellaneous type of ergodicity can be realized by adjusting the hardcore constraints.
We analyze different forms of ergodicity and study their impact on the non-equilibrium dynamics of a Z2 initial state.
arXiv Detail & Related papers (2021-04-01T18:10:43Z) - Observing localisation in a 2D quasicrystalline optical lattice [52.77024349608834]
We experimentally and numerically study the ground state of non- and weakly-interacting bosons in an eightfold symmetric optical lattice.
We find extended states for weak lattices but observe a localisation transition at a lattice depth of $V_0.78(2),E_mathrmrec$ for the non-interacting system.
arXiv Detail & Related papers (2020-01-29T15:54:42Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.