論文の概要: How Human-Centered Explainable AI Interface Are Designed and Evaluated: A Systematic Survey
- arxiv url: http://arxiv.org/abs/2403.14496v1
- Date: Thu, 21 Mar 2024 15:44:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 13:39:41.906185
- Title: How Human-Centered Explainable AI Interface Are Designed and Evaluated: A Systematic Survey
- Title(参考訳): 人間中心の説明可能なAIインターフェースがどのように設計され、評価されるか:システマティック調査
- Authors: Thu Nguyen, Alessandro Canossa, Jichen Zhu,
- Abstract要約: Em Explainable Interfaces (EIs) の登場する領域は,XAI のユーザインターフェースとユーザエクスペリエンス設計に重点を置いている。
本稿では,人間とXAIの相互作用の現在の動向と,EI設計・開発に向けた将来的な方向性を明らかにするために,53の出版物を体系的に調査する。
- 参考スコア(独自算出の注目度): 48.97104365617498
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite its technological breakthroughs, eXplainable Artificial Intelligence (XAI) research has limited success in producing the {\em effective explanations} needed by users. In order to improve XAI systems' usability, practical interpretability, and efficacy for real users, the emerging area of {\em Explainable Interfaces} (EIs) focuses on the user interface and user experience design aspects of XAI. This paper presents a systematic survey of 53 publications to identify current trends in human-XAI interaction and promising directions for EI design and development. This is among the first systematic survey of EI research.
- Abstract(参考訳): 技術的なブレークスルーにもかかわらず、eXplainable Artificial Intelligence (XAI)の研究は、ユーザが必要とする効果的な説明を生産することに成功した。
XAIシステムのユーザビリティ、実用的な解釈可能性、実ユーザに対する有効性を改善するため、EIs( {\em Explainable Interfaces)の出現する領域は、XAIのユーザインターフェースとユーザエクスペリエンス設計の側面に焦点を当てている。
本稿では,人間とXAIの相互作用の現在の動向と,EI設計・開発に向けた将来的な方向性を明らかにするために,53の出版物を体系的に調査する。
これは、EI研究の最初の体系的な調査である。
関連論文リスト
- Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Human-AI Interaction in Industrial Robotics: Design and Empirical Evaluation of a User Interface for Explainable AI-Based Robot Program Optimization [5.537321488131869]
本稿では,最先端の深層学習型ロボットプログラムのための説明ユーザインタフェース(XUI)を提案する。
XUIは、スキルレベルによって異なるユーザエクスペリエンスを持つ、ナイーブなユーザとエキスパートなユーザの両方を提供します。
論文 参考訳(メタデータ) (2024-04-30T08:20:31Z) - OpenHEXAI: An Open-Source Framework for Human-Centered Evaluation of Explainable Machine Learning [43.87507227859493]
本稿では,XAI 手法を人間中心で評価するオープンソースフレームワーク OpenHEXAI について述べる。
OpenHEAXIは、XAIメソッドの人間中心ベンチマークを促進するための、最初の大規模なインフラ構築である。
論文 参考訳(メタデータ) (2024-02-20T22:17:59Z) - How much informative is your XAI? A decision-making assessment task to
objectively measure the goodness of explanations [53.01494092422942]
XAIに対する個人化アプローチとユーザ中心アプローチの数は、近年急速に増加している。
ユーザ中心のXAIアプローチがユーザとシステム間のインタラクションに肯定的な影響を与えることが明らかとなった。
我々は,XAIシステムの良否を客観的かつ定量的に評価するための評価課題を提案する。
論文 参考訳(メタデータ) (2023-12-07T15:49:39Z) - Invisible Users: Uncovering End-Users' Requirements for Explainable AI
via Explanation Forms and Goals [19.268536451101912]
非技術者のエンドユーザは、最先端の説明可能な人工知能(XAI)技術のサイレントで目に見えないユーザです。
それらのAI説明可能性に対する要求と要求は、XAI技術の設計と評価には組み込まれていない。
これにより、XAI技術は、医療、刑事司法、金融、自動運転システムといった、高額な応用において非効率または有害である。
論文 参考訳(メタデータ) (2023-02-10T19:35:57Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Towards Human-centered Explainable AI: A Survey of User Studies for Model Explanations [18.971689499890363]
我々は過去5年間に人間によるXAI評価で97コア論文を特定し分析してきた。
我々の研究は、XAIがレコメンダシステムなど特定のアプリケーション領域で急速に普及していることを示している。
我々は,XAI研究者や実践者を対象としたユーザスタディの設計と実施に関する実践的ガイドラインを提案する。
論文 参考訳(メタデータ) (2022-10-20T20:53:00Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
説明可能なAI(XAI)を評価するために,ユーザ中心のペルソナ概念を提案する。
分析の結果,ユーザの人口統計や性格,説明のタイプ,影響説明の嗜好が示された。
私たちの洞察は、対話的で人間中心のXAIを実践的な応用に近づけます。
論文 参考訳(メタデータ) (2022-10-07T12:51:27Z) - Human-Centered Explainable AI (XAI): From Algorithms to User Experiences [29.10123472973571]
説明可能なAI(XAI)は近年,膨大なアルゴリズムコレクションを生み出している。
分野は学際的視点と人間中心のアプローチを受け入れ始めている。
論文 参考訳(メタデータ) (2021-10-20T21:33:46Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。