論文の概要: Human-AI Interaction in Industrial Robotics: Design and Empirical Evaluation of a User Interface for Explainable AI-Based Robot Program Optimization
- arxiv url: http://arxiv.org/abs/2404.19349v1
- Date: Tue, 30 Apr 2024 08:20:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 14:54:33.966382
- Title: Human-AI Interaction in Industrial Robotics: Design and Empirical Evaluation of a User Interface for Explainable AI-Based Robot Program Optimization
- Title(参考訳): 産業ロボットにおけるヒューマンAIインタラクション:説明可能なAIに基づくロボットプログラム最適化のためのユーザインタフェースの設計と実証評価
- Authors: Benjamin Alt, Johannes Zahn, Claudius Kienle, Julia Dvorak, Marvin May, Darko Katic, Rainer Jäkel, Tobias Kopp, Michael Beetz, Gisela Lanza,
- Abstract要約: 本稿では,最先端の深層学習型ロボットプログラムのための説明ユーザインタフェース(XUI)を提案する。
XUIは、スキルレベルによって異なるユーザエクスペリエンスを持つ、ナイーブなユーザとエキスパートなユーザの両方を提供します。
- 参考スコア(独自算出の注目度): 5.537321488131869
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While recent advances in deep learning have demonstrated its transformative potential, its adoption for real-world manufacturing applications remains limited. We present an Explanation User Interface (XUI) for a state-of-the-art deep learning-based robot program optimizer which provides both naive and expert users with different user experiences depending on their skill level, as well as Explainable AI (XAI) features to facilitate the application of deep learning methods in real-world applications. To evaluate the impact of the XUI on task performance, user satisfaction and cognitive load, we present the results of a preliminary user survey and propose a study design for a large-scale follow-up study.
- Abstract(参考訳): 近年のディープラーニングの進歩は、その変革の可能性を示しているが、実際の製造アプリケーションへの採用は限られている。
我々は,最先端のディープラーニングベースのロボットプログラムオプティマイザのための説明型ユーザインタフェース(XUI)を提案し,そのスキルレベルに応じたユーザエクスペリエンスを提供するとともに,現実世界のアプリケーションにディープラーニング手法を適用するための説明可能なAI(XAI)機能も提供する。
タスクパフォーマンス,ユーザ満足度,認知負荷に対するXUIの影響を評価するため,予備調査の結果を提示し,大規模フォローアップ研究のための研究設計を提案する。
関連論文リスト
- How Human-Centered Explainable AI Interface Are Designed and Evaluated: A Systematic Survey [48.97104365617498]
Em Explainable Interfaces (EIs) の登場する領域は,XAI のユーザインターフェースとユーザエクスペリエンス設計に重点を置いている。
本稿では,人間とXAIの相互作用の現在の動向と,EI設計・開発に向けた将来的な方向性を明らかにするために,53の出版物を体系的に調査する。
論文 参考訳(メタデータ) (2024-03-21T15:44:56Z) - OpenHEXAI: An Open-Source Framework for Human-Centered Evaluation of Explainable Machine Learning [43.87507227859493]
本稿では,XAI 手法を人間中心で評価するオープンソースフレームワーク OpenHEXAI について述べる。
OpenHEAXIは、XAIメソッドの人間中心ベンチマークを促進するための、最初の大規模なインフラ構築である。
論文 参考訳(メタデータ) (2024-02-20T22:17:59Z) - Generative User-Experience Research for Developing Domain-specific
Natural Language Processing Applications [4.5224851085910585]
本稿では、生成UX研究をドメインNLPアプリケーションに組み込むための新しい手法を提案する。
生成UX研究は、プロトタイプ開発の初期段階、すなわちアイデアと概念評価、およびシステムの有用性とユーザ有用性を評価するための最終段階において、ドメインユーザーを採用する。
論文 参考訳(メタデータ) (2023-06-28T12:17:45Z) - BO-Muse: A human expert and AI teaming framework for accelerated
experimental design [58.61002520273518]
我々のアルゴリズムは、人間の専門家が実験プロセスでリードすることを可能にする。
我々のアルゴリズムは、AIや人間よりも高速に、サブ線形に収束することを示す。
論文 参考訳(メタデータ) (2023-03-03T02:56:05Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - What Do End-Users Really Want? Investigation of Human-Centered XAI for
Mobile Health Apps [69.53730499849023]
説明可能なAI(XAI)を評価するために,ユーザ中心のペルソナ概念を提案する。
分析の結果,ユーザの人口統計や性格,説明のタイプ,影響説明の嗜好が示された。
私たちの洞察は、対話的で人間中心のXAIを実践的な応用に近づけます。
論文 参考訳(メタデータ) (2022-10-07T12:51:27Z) - Let's Go to the Alien Zoo: Introducing an Experimental Framework to
Study Usability of Counterfactual Explanations for Machine Learning [6.883906273999368]
反事実的説明(CFEs)は、心理的に根拠づけられたアプローチとして、ポストホックな説明を生み出している。
私たちは、エンゲージメントがあり、Webベースでゲームに触発された実験的なフレームワークであるAlien Zooを紹介します。
概念実証として,本手法の有効性と実用性を示す。
論文 参考訳(メタデータ) (2022-05-06T17:57:05Z) - iRoPro: An interactive Robot Programming Framework [2.7651063843287718]
iRoProを使うと、技術的背景がほとんど、あるいは全くないユーザーが、ロボットに新しい再利用可能なアクションを教えることができる。
バクスター研究ロボット上で,iRoProをエンドツーエンドシステムとして実装する。
論文 参考訳(メタデータ) (2021-12-08T13:53:43Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。