Denoising Diffusion Models for 3D Healthy Brain Tissue Inpainting
- URL: http://arxiv.org/abs/2403.14499v1
- Date: Thu, 21 Mar 2024 15:52:05 GMT
- Title: Denoising Diffusion Models for 3D Healthy Brain Tissue Inpainting
- Authors: Alicia Durrer, Julia Wolleb, Florentin Bieder, Paul Friedrich, Lester Melie-Garcia, Mario Ocampo-Pineda, Cosmin I. Bercea, Ibrahim E. Hamamci, Benedikt Wiestler, Marie Piraud, Özgür Yaldizli, Cristina Granziera, Bjoern H. Menze, Philippe C. Cattin, Florian Kofler,
- Abstract summary: Monitoring diseases that affect the brain's structural integrity requires automated analysis of magnetic resonance (MR) images.
We modify state-of-the-art 2D, pseudo-3D, and 3D methods working in the image space, as well as 3D latent and 3D wavelet diffusion models, and train them to synthesize healthy brain tissue.
Our evaluation shows that the pseudo-3D model performs best regarding the structural-similarity index, peak signal-to-noise ratio, and mean squared error.
- Score: 3.9347915104376168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monitoring diseases that affect the brain's structural integrity requires automated analysis of magnetic resonance (MR) images, e.g., for the evaluation of volumetric changes. However, many of the evaluation tools are optimized for analyzing healthy tissue. To enable the evaluation of scans containing pathological tissue, it is therefore required to restore healthy tissue in the pathological areas. In this work, we explore and extend denoising diffusion models for consistent inpainting of healthy 3D brain tissue. We modify state-of-the-art 2D, pseudo-3D, and 3D methods working in the image space, as well as 3D latent and 3D wavelet diffusion models, and train them to synthesize healthy brain tissue. Our evaluation shows that the pseudo-3D model performs best regarding the structural-similarity index, peak signal-to-noise ratio, and mean squared error. To emphasize the clinical relevance, we fine-tune this model on data containing synthetic MS lesions and evaluate it on a downstream brain tissue segmentation task, whereby it outperforms the established FMRIB Software Library (FSL) lesion-filling method.
Related papers
- Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario [0.8749675983608172]
This model intends to provide a dataset of brain arteries which could be used by a 3D convolutional neural network to efficiently detect Intra-Cranial Aneurysms.
In this work, we thoroughly describe the synthetic vasculature model, we build up a neural network designed for aneurysm segmentation and detection, and we carry out an in-depth evaluation of the performance gap gained thanks to the synthetic model data augmentation.
arXiv Detail & Related papers (2024-11-04T18:08:24Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject.
We show that our model captures the distinct functionalities of each region of human vision system.
Preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios.
arXiv Detail & Related papers (2024-05-24T06:06:11Z) - A vascular synthetic model for improved aneurysm segmentation and detection via Deep Neural Networks [0.8749675983608172]
Our goal was to provide a dataset of brain arteries which could be used by a 3D Convolutional Neural Network (CNN)
Our model has been designed to simultaneously mimic the arteries geometry, the ICA shape and the background noise.
arXiv Detail & Related papers (2024-03-27T16:22:45Z) - Denoising Diffusion Models for Inpainting of Healthy Brain Tissue [0.7022492404644499]
This paper is a contribution to the "BraTS 2023 Local Synthesis of Healthy Brain Tissue via Inpainting Challenge"
The task of this challenge is to transform tumor tissue into healthy tissue in brain magnetic resonance (MR) images.
We use a 2D model that is trained using slices in which healthy tissue was cropped out and is learned to be inpainted again.
arXiv Detail & Related papers (2024-02-27T08:31:39Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
Thyroid disorders are most commonly diagnosed using high-resolution Ultrasound (US)
Longitudinal tracking is a pivotal diagnostic protocol for monitoring changes in pathological thyroid morphology.
We present a framework for automated US image slice localization within a 3D shape representation.
arXiv Detail & Related papers (2023-09-01T10:10:46Z) - Two-and-a-half Order Score-based Model for Solving 3D Ill-posed Inverse
Problems [7.074380879971194]
We propose a novel two-and-a-half order score-based model (TOSM) for 3D volumetric reconstruction.
During the training phase, our TOSM learns data distributions in 2D space, which reduces the complexity of training.
In the reconstruction phase, the TOSM updates the data distribution in 3D space, utilizing complementary scores along three directions.
arXiv Detail & Related papers (2023-08-16T17:07:40Z) - Weakly Supervised AI for Efficient Analysis of 3D Pathology Samples [6.381153836752796]
We present Modality-Agnostic Multiple instance learning for volumetric Block Analysis (MAMBA) for processing 3D tissue images.
With the 3D block-based approach, MAMBA achieves an area under the receiver operating characteristic curve (AUC) of 0.86 and 0.74, superior to 2D traditional single-slice-based prognostication.
Further analyses reveal that the incorporation of greater tissue volume improves prognostic performance and mitigates risk prediction variability from sampling bias.
arXiv Detail & Related papers (2023-07-27T14:48:02Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - 3-Dimensional Deep Learning with Spatial Erasing for Unsupervised
Anomaly Segmentation in Brain MRI [55.97060983868787]
We investigate whether using increased spatial context by using MRI volumes combined with spatial erasing leads to improved unsupervised anomaly segmentation performance.
We compare 2D variational autoencoder (VAE) to their 3D counterpart, propose 3D input erasing, and systemically study the impact of the data set size on the performance.
Our best performing 3D VAE with input erasing leads to an average DICE score of 31.40% compared to 25.76% for the 2D VAE.
arXiv Detail & Related papers (2021-09-14T09:17:27Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.