論文の概要: Cobra: Extending Mamba to Multi-Modal Large Language Model for Efficient Inference
- arxiv url: http://arxiv.org/abs/2403.14520v3
- Date: Wed, 5 Jun 2024 12:34:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 00:40:47.872243
- Title: Cobra: Extending Mamba to Multi-Modal Large Language Model for Efficient Inference
- Title(参考訳): Cobra: 効率的な推論のためのマルチモーダル大言語モデルへのMambaの拡張
- Authors: Han Zhao, Min Zhang, Wei Zhao, Pengxiang Ding, Siteng Huang, Donglin Wang,
- Abstract要約: 線形計算複雑性マルチモーダル言語モデル(MLLM)であるCobraを提案する。
特に、Cobraは効率的なMamba言語モデルを視覚的モダリティに統合する。
プロジェクトページは、https://sites.google.com/view/cobravlm.com/com/com/cobravlm.comで公開されている。
- 参考スコア(独自算出の注目度): 38.777236272048874
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, the application of multimodal large language models (MLLM) in various fields has achieved remarkable success. However, as the foundation model for many downstream tasks, current MLLMs are composed of the well-known Transformer network, which has a less efficient quadratic computation complexity. To improve the efficiency of such basic models, we propose Cobra, a linear computational complexity MLLM. Specifically, Cobra integrates the efficient Mamba language model into the visual modality. Moreover, we explore and study various modal fusion schemes to create an effective multi-modal Mamba. Extensive experiments demonstrate that (1) Cobra achieves extremely competitive performance with current computationally efficient state-of-the-art methods, e.g., LLaVA-Phi, TinyLLaVA, and MobileVLM v2, and has faster speed due to Cobra's linear sequential modeling. (2) Interestingly, the results of closed-set challenging prediction benchmarks show that Cobra performs well in overcoming visual illusions and spatial relationship judgments. (3) Notably, Cobra even achieves comparable performance to LLaVA with about 43% of the number of parameters. We will make all codes of Cobra open-source and hope that the proposed method can facilitate future research on complexity problems in MLLM. Our project page is available at: https://sites.google.com/view/cobravlm.
- Abstract(参考訳): 近年,多モーダル大規模言語モデル (MLLM) の様々な分野への応用が目覚ましい成功を収めている。
しかし、多くの下流タスクの基礎モデルとして、現在のMLLMは2次計算の複雑さの少ないよく知られたトランスフォーマーネットワークで構成されている。
このような基本モデルの効率を改善するために,線形計算複雑性MLLMであるCobraを提案する。
特に、Cobraは効率的なMamba言語モデルを視覚的モダリティに統合する。
さらに,効率的なマルチモーダルマンバを作成するための様々なモーダル融合スキームを探索し,検討する。
大規模実験により,(1)コブラの線形逐次モデルにより,コブラの高速な性能が向上し,計算効率が向上した現状,例えば,LLaVA-Phi,TinyLLaVA,MobileVLM v2が得られた。
2) 視覚錯覚や空間的関係判断を克服する上で, クローズドセットの課題予測ベンチマークの結果は良好であった。
(3) 特に、Cobraはパラメータの約43%でLLaVAに匹敵するパフォーマンスを実現している。
我々は,Cobraのすべてのコードをオープンソースにし,提案手法がMLLMにおける複雑性問題の今後の研究を促進することを期待する。
プロジェクトページは、https://sites.google.com/view/cobravlm.com/com/com/cobravlm.comで公開されている。
関連論文リスト
- Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、そのサイズは計算のボトルネックを生み出している。
そこで本研究では,高性能LLMの高精度かつ疎結合な基本バージョンを作成するための新しいアプローチを提案する。
スパース量子化LLaMAの最大8.6倍のCPU上での総高速化を示す。
論文 参考訳(メタデータ) (2024-05-06T16:03:32Z) - SPMamba: State-space model is all you need in speech separation [6.590157910988076]
状態空間モデルを用いた音声分離のためのネットワークアーキテクチャを提案する。
我々はTF-GridNetモデルを基本フレームワークとして採用し、Transformerコンポーネントを双方向のMambaモジュールで置き換える。
実験の結果,マンバモデルの性能面において重要な役割を担っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-04-02T16:04:31Z) - VL-Mamba: Exploring State Space Models for Multimodal Learning [22.701028299912398]
本研究では,状態空間モデルに基づく多モーダル大規模言語モデルであるVL-Mambaを提案する。
具体的には、まず、LLamaやVicunaのようなトランスフォーマーベースのバックボーン言語モデルを、事前訓練されたMamba言語モデルに置き換える。
論文 参考訳(メタデータ) (2024-03-20T13:48:50Z) - EfficientVMamba: Atrous Selective Scan for Light Weight Visual Mamba [19.062950348441426]
本研究は、軽量モデル設計における視覚状態空間モデルの可能性を探究し、EfficientVMambaと呼ばれる新しい効率的なモデル変種を導入することを提案する。
我々のEfficientVMambaは、グローバルおよびローカルの両方の表現機能を利用するように設計されたビルディングブロックを構成する効率的なスキップサンプリングにより、アトラスベースの選択的スキャン手法を統合する。
実験の結果,EfficientVMambaは計算複雑性を縮小し,様々な視覚タスクの競合結果が得られることがわかった。
論文 参考訳(メタデータ) (2024-03-15T02:48:47Z) - PointMamba: A Simple State Space Model for Point Cloud Analysis [65.59944745840866]
我々は、最近の代表的状態空間モデル(SSM)であるMambaの成功を、NLPからポイントクラウド分析タスクへ転送するPointMambaを提案する。
従来のトランスフォーマーとは異なり、PointMambaは線形複雑性アルゴリズムを採用し、グローバルなモデリング能力を示しながら計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2024-02-16T14:56:13Z) - Is Mamba Capable of In-Context Learning? [63.682741783013306]
GPT-4のような技術基盤モデルの現状は、文脈内学習(ICL)において驚くほどよく機能する
この研究は、新たに提案された状態空間モデルであるMambaが同様のICL能力を持つという実証的な証拠を提供する。
論文 参考訳(メタデータ) (2024-02-05T16:39:12Z) - BlackMamba: Mixture of Experts for State-Space Models [10.209192169793772]
状態空間モデル(SSM)は、最近、大規模な言語モデリングベンチマークでトランスフォーマーと競合する性能を示した。
MoEモデルは、計算コストと遅延コストを大幅に削減しながら、顕著なパフォーマンスを示している。
我々は,Mamba SSMとMoEを組み合わせた新しいアーキテクチャであるBlackMambaを紹介した。
論文 参考訳(メタデータ) (2024-02-01T07:15:58Z) - CoLLiE: Collaborative Training of Large Language Models in an Efficient
Way [59.09824823710863]
CoLLiEは、大規模な言語モデルの協調トレーニングを容易にする効率的なライブラリである。
モジュール設計と包括的な機能により、CoLLiEは効率性、使いやすさ、カスタマイズのバランスのとれたブレンドを提供する。
論文 参考訳(メタデータ) (2023-12-01T08:02:16Z) - CodeGen2: Lessons for Training LLMs on Programming and Natural Languages [116.74407069443895]
我々はエンコーダとデコーダベースのモデルを単一のプレフィックスLMに統一する。
学習方法は,「フリーランチ」仮説の主張を考察する。
データ配信においては,混合分布と多言語学習がモデル性能に及ぼす影響について検討した。
論文 参考訳(メタデータ) (2023-05-03T17:55:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。