論文の概要: A survey on Concept-based Approaches For Model Improvement
- arxiv url: http://arxiv.org/abs/2403.14566v1
- Date: Thu, 21 Mar 2024 17:09:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 13:20:11.457464
- Title: A survey on Concept-based Approaches For Model Improvement
- Title(参考訳): モデル改善のための概念ベースアプローチに関する調査研究
- Authors: Avani Gupta, P J Narayanan,
- Abstract要約: 概念に基づくアプローチは、コンセプトと呼ばれる単純な人間の理解可能な用語でモデルの判断を説明する。
概念的な説明は、刺激的な相関、固有のバイアス、または賢いハンの検出を可能にする。
近年の手法では, ポストホックモデルのアンタングルメント評価に, 他の手法ではアンテホックトレーニングに使用されている。
- 参考スコア(独自算出の注目度): 2.1516043775965565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The focus of recent research has shifted from merely increasing the Deep Neural Networks (DNNs) performance in various tasks to DNNs, which are more interpretable to humans. The field of eXplainable Artificial Intelligence (XAI) has observed various techniques, including saliency-based and concept-based approaches. Concept-based approaches explain the model's decisions in simple human understandable terms called Concepts. Concepts are human interpretable units of data and are the thinking ground of humans. Explanations in terms of concepts enable detecting spurious correlations, inherent biases, or clever-hans. With the advent of concept-based explanations, there have been various concept representation methods and automatic concept discovery algorithms. Some recent methods use concepts for post-hoc model disentanglement evaluation, while others use them for ante-hoc training. The concept-based approaches are new, with many representations coming up, and there is very limited work on Concept-based Model improvement. We provide a systematic review and taxonomy of various concept representations and their discovery algorithms in DNNs, specifically in vision. We also provide details on concept-based model improvement literature, which is the first to survey concept-based model improvement methods.
- Abstract(参考訳): 最近の研究の焦点は、様々なタスクにおけるDeep Neural Networks(DNN)のパフォーマンスを単に増加させることから、人間に解釈しやすいDNNへと移行した。
eXplainable Artificial Intelligence(XAI)の分野は、サリエンシベースのアプローチやコンセプトベースのアプローチなど、さまざまなテクニックを観測してきた。
概念に基づくアプローチは、コンセプトと呼ばれる単純な人間の理解可能な用語でモデルの判断を説明する。
概念は人間の解釈可能なデータの単位であり、人間の思考基盤である。
概念的な説明は、刺激的な相関、固有のバイアス、または賢いハンの検出を可能にする。
概念に基づく説明の出現に伴い、様々な概念表現法と自動概念発見アルゴリズムが存在する。
最近の手法では、ポストホックモデルのアンタングルメント評価に概念を用いるものもあれば、アンテホックトレーニングに使用するものもある。
コンセプトベースのアプローチは新しいもので、多くの表現が登場する。
様々な概念表現の体系的なレビューと分類と,その発見アルゴリズムをDNNで,特に視覚において提供する。
また,概念に基づくモデル改善手法を調査した最初の論文である,概念に基づくモデル改善文献について詳述する。
関連論文リスト
- Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
ディープニューラルネットワークの「ブラックボックス」問題に対処するために、概念ボトルネックモデル(CBM)が提案されている。
本稿では,典型的なパラダイムを逆転させる新しいCBMアプローチであるDiscover-then-Name-CBM(DN-CBM)を提案する。
我々の概念抽出戦略は、下流のタスクに非依存であり、既にそのモデルに知られている概念を使用するため、効率的である。
論文 参考訳(メタデータ) (2024-07-19T17:50:11Z) - LLM-assisted Concept Discovery: Automatically Identifying and Explaining Neuron Functions [15.381209058506078]
以前の研究は、概念の例や事前に定義された概念のセットに基づいて、ニューロンに関連づけられた概念を持っている。
本稿では,マルチモーダルな大規模言語モデルを用いて,自動的かつオープンな概念発見を提案する。
我々は,この新たな画像に対して,サンプルと反例を生成し,ニューロンの反応を評価することにより,それぞれの概念を検証する。
論文 参考訳(メタデータ) (2024-06-12T18:19:37Z) - A Self-explaining Neural Architecture for Generalizable Concept Learning [29.932706137805713]
現在,SOTA の概念学習アプローチは,概念の忠実さの欠如と,概念の相互運用の限界という2つの大きな問題に悩まされている。
ドメイン間の概念学習のための新しい自己説明型アーキテクチャを提案する。
提案手法は,現在広く使われている4つの実世界のデータセットに対するSOTA概念学習手法に対して有効であることを示す。
論文 参考訳(メタデータ) (2024-05-01T06:50:18Z) - An Axiomatic Approach to Model-Agnostic Concept Explanations [67.84000759813435]
本稿では、線形性、再帰性、類似性という3つの自然な公理を満たす概念的説明へのアプローチを提案する。
次に、従来の概念的説明手法とのつながりを確立し、それらの意味の異なる意味についての洞察を提供する。
論文 参考訳(メタデータ) (2024-01-12T20:53:35Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - Concept backpropagation: An Explainable AI approach for visualising
learned concepts in neural network models [0.0]
本稿では,ある概念を表す情報が与えられたニューラルネットワークモデルにどのように内在化されているかを分析する方法として,Emphconcept backpropagationという概念検出手法の拡張を提案する。
論文 参考訳(メタデータ) (2023-07-24T08:21:13Z) - From Attribution Maps to Human-Understandable Explanations through
Concept Relevance Propagation [16.783836191022445]
eXplainable Artificial Intelligence(XAI)の分野は、今日の強力だが不透明なディープラーニングモデルに透明性をもたらすことを目指している。
局所的なXAI手法は属性マップの形で個々の予測を説明するが、グローバルな説明手法はモデルが一般的にエンコードするために学んだ概念を視覚化する。
論文 参考訳(メタデータ) (2022-06-07T12:05:58Z) - Human-Centered Concept Explanations for Neural Networks [47.71169918421306]
概念活性化ベクトル(Concept Activation Vectors, CAV)のクラスを含む概念的説明を紹介する。
次に、自動的に概念を抽出するアプローチと、それらの注意事項に対処するアプローチについて議論する。
最後に、このような概念に基づく説明が、合成設定や実世界の応用において有用であることを示すケーススタディについて論じる。
論文 参考訳(メタデータ) (2022-02-25T01:27:31Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
本研究では,人間の解釈可能な概念次元に沿って学習することで,一般化能力を向上させるメタ学習手法であるCOMETを提案する。
我々は,細粒度画像分類,文書分類,セルタイプアノテーションなど,さまざまな領域からの少数ショットタスクによるモデルの評価を行った。
論文 参考訳(メタデータ) (2020-07-14T22:04:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。