論文の概要: MemeCraft: Contextual and Stance-Driven Multimodal Meme Generation
- arxiv url: http://arxiv.org/abs/2403.14652v1
- Date: Sat, 24 Feb 2024 06:14:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 03:52:54.821526
- Title: MemeCraft: Contextual and Stance-Driven Multimodal Meme Generation
- Title(参考訳): MemeCraft: コンテキストとスタンス駆動のマルチモーダルミーム生成
- Authors: Han Wang, Roy Ka-Wei Lee,
- Abstract要約: 我々は,大規模言語モデル(LLM)と視覚言語モデル(VLM)を活用して,特定の社会運動を提唱するミームを生成する,革新的なミームジェネレータであるMemeCraftを紹介した。
MemeCraftはエンドツーエンドのパイプラインを提供し、ユーザプロンプトを手作業で介入することなく、魅力的なマルチモーダルミームに変換する。
- 参考スコア(独自算出の注目度): 9.048389283002294
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Online memes have emerged as powerful digital cultural artifacts in the age of social media, offering not only humor but also platforms for political discourse, social critique, and information dissemination. Their extensive reach and influence in shaping online communities' sentiments make them invaluable tools for campaigning and promoting ideologies. Despite the development of several meme-generation tools, there remains a gap in their systematic evaluation and their ability to effectively communicate ideologies. Addressing this, we introduce MemeCraft, an innovative meme generator that leverages large language models (LLMs) and visual language models (VLMs) to produce memes advocating specific social movements. MemeCraft presents an end-to-end pipeline, transforming user prompts into compelling multimodal memes without manual intervention. Conscious of the misuse potential in creating divisive content, an intrinsic safety mechanism is embedded to curb hateful meme production.
- Abstract(参考訳): オンラインミームは、ソーシャルメディアの時代に強力なデジタル文化的アーティファクトとして出現し、ユーモアだけでなく、政治談話、社会的批判、情報発信のためのプラットフォームも提供している。
オンラインコミュニティの感情形成における彼らの広範なリーチと影響力は、イデオロギーのキャンペーンや促進のための貴重なツールとなっている。
いくつかのミーム生成ツールの開発にもかかわらず、その体系的評価とイデオロギーを効果的に伝達する能力にはギャップが残っている。
そこで我々は,大規模言語モデル(LLM)と視覚言語モデル(VLM)を活用して,特定の社会運動を提唱するミームを生成する,革新的なミームジェネレータであるMemeCraftを紹介した。
MemeCraftはエンドツーエンドのパイプラインを提供し、ユーザプロンプトを手作業で介入することなく、魅力的なマルチモーダルミームに変換する。
異種コンテンツの誤用の可能性を考えると、本質的な安全機構が組み込まれ、嫌悪なミーム生産を抑制する。
関連論文リスト
- XMeCap: Meme Caption Generation with Sub-Image Adaptability [53.2509590113364]
社会的な意味や文化的な詳細に深く根ざした噂は、機械にとってユニークな挑戦である。
我々は、教師付き微調整と強化学習を採用するtextscXMeCapフレームワークを紹介した。
textscXMeCapは、シングルイメージのミームの平均評価スコアが75.85で、マルチイメージのミームは66.32で、それぞれ3.71%と4.82%で最高のベースラインを上回っている。
論文 参考訳(メタデータ) (2024-07-24T10:51:46Z) - Meme-ingful Analysis: Enhanced Understanding of Cyberbullying in Memes
Through Multimodal Explanations [48.82168723932981]
Em MultiBully-Exは、コード混在型サイバーいじめミームからマルチモーダルな説明を行うための最初のベンチマークデータセットである。
ミームの視覚的およびテキスト的説明のために,コントラスト言語-画像事前学習 (CLIP) アプローチが提案されている。
論文 参考訳(メタデータ) (2024-01-18T11:24:30Z) - Contextualizing Internet Memes Across Social Media Platforms [8.22187358555391]
我々は,知識のセマンティックリポジトリ,すなわち知識グラフを用いて,インターネットミームを文脈化できるかどうかを検討する。
RedditとDiscordという2つのソーシャルメディアプラットフォームから何千もの潜在的なインターネットミーム投稿を収集し、抽出-変換-ロード手順を開発し、候補ミーム投稿とデータレイクを作成します。
視覚変換器をベースとした類似性を利用して、これらの候補をIMKGでカタログ化されたミーム(インターネットミームの知識グラフ)と比較する。
論文 参考訳(メタデータ) (2023-11-18T20:18:18Z) - A Template Is All You Meme [83.05919383106715]
我々は,54,000枚以上の画像からなる www.knowyourme.com で発見されたミームと情報の知識ベースをリリースする。
我々は、ミームテンプレートが、以前のアプローチから欠落したコンテキストでモデルを注入するのに使えると仮定する。
論文 参考訳(メタデータ) (2023-11-11T19:38:14Z) - Detecting and Understanding Harmful Memes: A Survey [48.135415967633676]
我々は有害なミームに焦点を当てた総合的な調査を行っている。
興味深い発見の1つは、多くの有害ミームが実際には研究されていないことである。
別の観察では、ミームは異なる言語で再パッケージ化することでグローバルに伝播し、多言語化することもできる。
論文 参考訳(メタデータ) (2022-05-09T13:43:27Z) - Feels Bad Man: Dissecting Automated Hateful Meme Detection Through the
Lens of Facebook's Challenge [10.775419935941008]
我々は,現在最先端のマルチモーダル機械学習モデルのヘイトフルミーム検出に対する有効性を評価する。
4chanの"Politically Incorrect"ボード(/pol/)とFacebookのHateful Memes Challengeデータセットの12,140と10,567の2つのベンチマークデータセットを使用します。
分類性能におけるマルチモーダリティの重要性,主流のソーシャルプラットフォーム上でのWebコミュニティの影響力,その逆の3つの実験を行った。
論文 参考訳(メタデータ) (2022-02-17T07:52:22Z) - Multi-modal application: Image Memes Generation [13.043370069398916]
エンド・ツー・エンドのエンコーダ・デコーダ・アーキテクチャ・ミーム・ジェネレータを提案する。
インターネットミームは一般的にイメージの形をとり、ミームテンプレート(画像)とキャプション(自然言語文)を組み合わせて作成される。
論文 参考訳(メタデータ) (2021-12-03T00:17:44Z) - Detecting Harmful Memes and Their Targets [27.25262711136056]
COVID-19に関連する3,544のミームを含む最初のベンチマークデータセットであるHarMemeを紹介します。
第1段階では、ミームを非常に有害、部分的に有害、または無害とラベル付けし、第2段階では、有害ミームが示す標的の種類をさらにアノテートした。
10の単一モーダルモデルとマルチモーダルモデルによる評価結果は、両方のタスクにマルチモーダル信号を使用することの重要性を強調している。
論文 参考訳(メタデータ) (2021-09-24T17:11:42Z) - Memes in the Wild: Assessing the Generalizability of the Hateful Memes
Challenge Dataset [47.65948529524281]
Pinterestからヘイトフルで非ヘイトフルなミームを収集して、Facebookデータセットで事前トレーニングされたモデルで、サンプル外のパフォーマンスを評価します。
1) キャプションをOCRで抽出しなければならない,2) ミームは従来のミームよりも多様であり, 会話のスクリーンショットやテキストをプレーンな背景に表示する,という2つの重要な側面がある。
論文 参考訳(メタデータ) (2021-07-09T09:04:05Z) - Entropy and complexity unveil the landscape of memes evolution [105.59074436693487]
われわれは、2011年から2020年までの10年間で、Redditから200万のビジュアルミームの進化を研究した。
ミームは新たなインターネットメタ言語の一部であるという仮説を支持する。
論文 参考訳(メタデータ) (2021-05-26T07:41:09Z) - Multimodal Learning for Hateful Memes Detection [6.6881085567421605]
本稿では,画像キャプション処理をミーム検出プロセスに組み込む新しい手法を提案する。
本モデルは,Hateful Memes Detection Challengeにおける有望な結果を得る。
論文 参考訳(メタデータ) (2020-11-25T16:49:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。