論文の概要: Machine Learning Predicts Upper Secondary Education Dropout as Early as the End of Primary School
- arxiv url: http://arxiv.org/abs/2403.14663v1
- Date: Fri, 1 Mar 2024 13:18:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 03:43:10.556079
- Title: Machine Learning Predicts Upper Secondary Education Dropout as Early as the End of Primary School
- Title(参考訳): 機械学習は初等教育の終了を早めに予測
- Authors: Maria Psyridou, Fabi Prezja, Minna Torppa, Marja-Kristiina Lerkkanen, Anna-Maija Poikkeus, Kati Vasalampi,
- Abstract要約: 本研究は、幼稚園から9年生までのデータを含む13年間の縦断データセットを用いて、モデリングの地平を広げた。
本手法は,学生の学術的・認知的スキル,モチベーション,行動,幸福感,公式記録されたドロップアウトデータなど,幅広いパラメータを取り入れた。
本研究で開発された機械学習モデルでは, 曲線(AUC)の平均面積が0.61まで, 改善されたAUCは0.65まで, グレード9まで, 顕著な分類能力を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Education plays a pivotal role in alleviating poverty, driving economic growth, and empowering individuals, thereby significantly influencing societal and personal development. However, the persistent issue of school dropout poses a significant challenge, with its effects extending beyond the individual. While previous research has employed machine learning for dropout classification, these studies often suffer from a short-term focus, relying on data collected only a few years into the study period. This study expanded the modeling horizon by utilizing a 13-year longitudinal dataset, encompassing data from kindergarten to Grade 9. Our methodology incorporated a comprehensive range of parameters, including students' academic and cognitive skills, motivation, behavior, well-being, and officially recorded dropout data. The machine learning models developed in this study demonstrated notable classification ability, achieving a mean area under the curve (AUC) of 0.61 with data up to Grade 6 and an improved AUC of 0.65 with data up to Grade 9. Further data collection and independent correlational and causal analyses are crucial. In future iterations, such models may have the potential to proactively support educators' processes and existing protocols for identifying at-risk students, thereby potentially aiding in the reinvention of student retention and success strategies and ultimately contributing to improved educational outcomes.
- Abstract(参考訳): 教育は貧困を緩和し、経済成長を推進し、個人を力づけることにおいて重要な役割を担っている。
しかし、学校の退学の持続的な問題は、その効果が個人を超えて広がるという重大な課題を生んでいる。
これまでの研究では、機械学習をドロップアウトの分類に用いていたが、これらの研究は短期的な焦点に悩まされ、研究期間のわずか数年で収集されたデータに依存していた。
本研究は、幼稚園から9年生までのデータを含む13年間の縦断データセットを用いて、モデリングの地平を広げた。
本手法は,学生の学術的・認知的スキル,モチベーション,行動,幸福感,公式記録されたドロップアウトデータなど,幅広いパラメータを取り入れた。
本研究で開発された機械学習モデルでは, 曲線(AUC)の平均面積が0.61まで, 改善されたAUCは0.65まで, グレード9まで, 顕著な分類能力を示した。
さらなるデータ収集と独立相関分析が重要である。
将来のイテレーションでは、そのようなモデルは、教育者のプロセスと、リスクの高い学生を特定する既存のプロトコルを積極的に支援する可能性があり、それによって、学生の保持と成功戦略の再発明を支援し、最終的には教育成果の改善に寄与する可能性がある。
関連論文リスト
- Granularity Matters in Long-Tail Learning [62.30734737735273]
より粒度の細かいデータセットは、データの不均衡の影響を受けにくい傾向があります。
既存のクラスと視覚的に類似したオープンセット補助クラスを導入し、頭と尾の両方の表現学習を強化することを目的とした。
補助授業の圧倒的な存在がトレーニングを混乱させるのを防ぐために,近隣のサイレンシング障害を導入する。
論文 参考訳(メタデータ) (2024-10-21T13:06:21Z) - Bayesian Causal Forests for Longitudinal Data: Assessing the Impact of Part-Time Work on Growth in High School Mathematics Achievement [0.0]
ベイジアンカウサル林の長手延長について紹介する。
このモデルは、数学的能力における個々の成長と、パートタイム作業への参加の影響の両方を柔軟に識別することができる。
その結果、ほとんどの学生にとってパートタイムワークの負の影響が明らかとなったが、当初は学校所有感が低い学生にとって潜在的利益が示唆された。
論文 参考訳(メタデータ) (2024-07-16T17:18:33Z) - Enhancing Generative Class Incremental Learning Performance with Model Forgetting Approach [50.36650300087987]
本研究は, ジェネレーティブ・クラス・インクリメンタル・ラーニング(GCIL, Generative Class Incremental Learning)への新たなアプローチを提案する。
我々は, 忘れる機構の統合により, 新たな知識獲得におけるモデルの性能が著しく向上することを発見した。
論文 参考訳(メタデータ) (2024-03-27T05:10:38Z) - Continual Learning with Pre-Trained Models: A Survey [61.97613090666247]
継続的な学習は、新しい知識を学ぶ際に、かつての知識の破滅的な忘れを克服することを目的としている。
本稿では, PTM を用いた CL の最近の進歩を包括的に調査する。
論文 参考訳(メタデータ) (2024-01-29T18:27:52Z) - Sensitivity, Performance, Robustness: Deconstructing the Effect of
Sociodemographic Prompting [64.80538055623842]
社会デマトグラフィープロンプトは、特定の社会デマトグラフィープロファイルを持つ人間が与える答えに向けて、プロンプトベースのモデルの出力を操縦する技術である。
ソシオデマトグラフィー情報はモデル予測に影響を及ぼし、主観的NLPタスクにおけるゼロショット学習を改善するのに有用であることを示す。
論文 参考訳(メタデータ) (2023-09-13T15:42:06Z) - Students Success Modeling: Most Important Factors [0.47829670123819784]
モデルは、卒業する確率の高い生徒、転校する確率の高い生徒、退学して高等教育を終了させる確率の高い生徒を識別する。
実験の結果,初等期において,大学生とリスクの高い学生の区別が合理的に達成できることが示唆された。
このモデルは、学校に3年間滞在する学生の運命を著しく予測している。
論文 参考訳(メタデータ) (2023-09-06T19:23:10Z) - A Predictive Model using Machine Learning Algorithm in Identifying
Students Probability on Passing Semestral Course [0.0]
本研究では,データマイニング手法の分類とアルゴリズムのための決定木を用いる。
新たに発見された予測モデルを利用することで、生徒の現在のコースを合格する確率の予測は、0.7619の精度、0.8333の精度、0.8823のリコール、0.8571のf1のスコアを与える。
論文 参考訳(メタデータ) (2023-04-12T01:57:08Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
我々は,データプライバシを同時に保持し,モデルの安定性を向上させるために,Pear Study Learning (PSL) と呼ばれる責任あるアクティブラーニング手法を提案する。
まず,クラウドサイドのタスク学習者(教師)から未学習データを分離する。
トレーニング中、タスク学習者は軽量なアクティブ学習者に指示し、アクティブサンプリング基準に対するフィードバックを提供する。
論文 参考訳(メタデータ) (2022-11-24T13:18:27Z) - Student-centric Model of Learning Management System Activity and
Academic Performance: from Correlation to Causation [2.169383034643496]
近年,学生の学習行動パターンを理解するために,学習管理システム(LMS)における学習者のデジタルトレースのモデル化に多くの関心が寄せられている。
本稿では,LMS活動データに対する学生中心の分析フレームワークについて検討し,観察データから抽出した相関性だけでなく因果的洞察も提供する。
これらの知見は、大学生支援団体が学生中心で標的とする介入を開始するための証拠となると期待している。
論文 参考訳(メタデータ) (2022-10-27T14:08:25Z) - Self-supervised Graph Learning for Long-tailed Cognitive Diagnosis [25.78814557029563]
グラフに基づく認知診断を支援するための自己教師付き認知診断(SCD)フレームワークを提案する。
具体的には,グラフのスパースビューを生成するために,特定のルールの下でエッジをドロップするグラフ混乱法を考案した。
論文 参考訳(メタデータ) (2022-10-15T02:57:09Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。