論文の概要: Electric Vehicle Enquiry (EVE) Pilot
- arxiv url: http://arxiv.org/abs/2403.14670v1
- Date: Tue, 5 Mar 2024 08:32:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 03:33:23.322219
- Title: Electric Vehicle Enquiry (EVE) Pilot
- Title(参考訳): EVEパイロット(Electric Vehicle Enquiry)
- Authors: Seun Osonuga, Frederic Wurtz, Benoit Delinchant,
- Abstract要約: このデータセットは、3年間のルノー動物園の利用データをカバーしている。
データセットの収集プロセス、その処理、および含むすべての変数の記述について詳述する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This data paper presents the dataset from a study on the use of electric vehicles (EVs). This dataset covers the first dataset collected in this study: the usage data from a Renault Zoe over 3 years. The process of collection of the dataset, its treatment, and descriptions of all the included variables are detailed. The collection of this dataset represents an iteration of participative research in the personal mobility domain as the dataset was collected with low-cost commercially available equipment and open-source software. Some of the challenges of providing the dataset are also discussed: the most pertinent being the intermittent nature of data collection as an android phone and OBDII adapter were used to collect the dataset.
- Abstract(参考訳): 本稿では,電気自動車(EV)の利用に関する研究からデータセットを提示する。
このデータセットは、この研究で収集された最初のデータセットをカバーしている。
データセットの収集プロセス、その処理、および含むすべての変数の説明は、詳細である。
このデータセットの収集は、低コストの商用機器とオープンソースソフトウェアで収集されたデータセットとして、パーソナルモビリティ領域における参加型研究のイテレーションを表している。
データセットを提供する際のいくつかの課題についても論じられている。最も重要なのは、アンドロイド電話やOBDIIアダプタとしてのデータ収集の断続的な性質である。
関連論文リスト
- Private, Augmentation-Robust and Task-Agnostic Data Valuation Approach for Data Marketplace [56.78396861508909]
PriArTaは、買い手の既存のデータセットと売り手のデータセットの分布の間の距離を計算するアプローチである。
PriArTaは通信効率が良く、買い手は各売り手からデータセット全体にアクセスすることなくデータセットを評価することができる。
論文 参考訳(メタデータ) (2024-11-01T17:13:14Z) - Putting Data at the Centre of Offline Multi-Agent Reinforcement Learning [3.623224034411137]
オフラインマルチエージェント強化学習(英語: offline multi-agent reinforcement learning, MARL)は、静的データセットを用いてマルチエージェントシステムの最適制御ポリシーを見つける研究のエキサイティングな方向である。
この分野は定義上はデータ駆動型だが、これまでのところ、最先端の結果を達成するための努力は、データを無視してきた。
研究の大部分は、一貫した方法論を使わずに独自のデータセットを生成し、これらのデータセットの特徴に関するまばらな情報を提供する。
論文 参考訳(メタデータ) (2024-09-18T14:13:24Z) - UniTraj: A Unified Framework for Scalable Vehicle Trajectory Prediction [93.77809355002591]
さまざまなデータセット、モデル、評価基準を統一する包括的なフレームワークであるUniTrajを紹介する。
我々は広範な実験を行い、他のデータセットに転送するとモデルの性能が大幅に低下することがわかった。
これらの知見を説明するために,データセットの特徴に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-03-22T10:36:50Z) - Datasets for Large Language Models: A Comprehensive Survey [37.153302283062004]
この調査は、LLMデータセットの基本的側面を5つの観点から統合し、分類する。
この調査は、一般的な課題を浮き彫りにし、今後の調査への道のりを指摘している。
調査対象のデータサイズは、事前トレーニングのコーパスが774.5TB、他のデータセットが700万インスタンスを超えている。
論文 参考訳(メタデータ) (2024-02-28T04:35:51Z) - A Survey on Datasets for Decision-making of Autonomous Vehicle [11.556769001552768]
意思決定は、ハイレベルな自動走行に向けた重要なモジュールの1つである。
データ駆動による意思決定アプローチは、ますます注目を集めています。
本研究では、車両、環境、運転者関連データの最先端データセットを比較した。
論文 参考訳(メタデータ) (2023-06-29T08:42:18Z) - DataFinder: Scientific Dataset Recommendation from Natural Language
Descriptions [100.52917027038369]
我々は、短い自然言語記述を与えられたデータセットを推奨するタスクを運用する。
この作業を容易にするために、我々は、より大規模な自動構築トレーニングセットと、より少ない専門家によるアノテート評価セットからなるDataFinderデータセットを構築した。
このシステムは、DataFinderデータセットに基づいてトレーニングされ、既存のサードパーティのデータセット検索エンジンよりも関連性の高い検索結果を見つける。
論文 参考訳(メタデータ) (2023-05-26T05:22:36Z) - A Comprehensive Survey of Dataset Distillation [73.15482472726555]
限られた計算能力で無制限に成長するデータを扱うことは困難になっている。
ディープラーニング技術はこの10年で前例のない発展を遂げた。
本稿では,多面的なデータセット蒸留の総合的な理解を提供する。
論文 参考訳(メタデータ) (2023-01-13T15:11:38Z) - Argoverse 2: Next Generation Datasets for Self-Driving Perception and
Forecasting [64.7364925689825]
Argoverse 2(AV2)は、自動運転分野の研究の知覚と予測のための3つのデータセットの集合である。
Lidarデータセットには、ラベルなしのLidar点雲とマップ整列ポーズの2万のシーケンスが含まれている。
Motion Forecastingデータセットには、各ローカルシーンにおける自動運転車と他のアクター間の興味深い、挑戦的なインタラクションのために採掘された25万のシナリオが含まれている。
論文 参考訳(メタデータ) (2023-01-02T00:36:22Z) - A Survey of Dataset Refinement for Problems in Computer Vision Datasets [11.45536223418548]
大規模データセットはコンピュータビジョンの進歩に重要な役割を果たしてきた。
クラス不均衡、ノイズの多いラベル、データセットバイアス、高いリソースコストといった問題に悩まされることが多い。
データセット問題を解決するために、様々なデータ中心のソリューションが提案されている。
データセットを再構成することで、データセットの品質が向上します。
論文 参考訳(メタデータ) (2022-10-21T03:58:43Z) - LiDAR dataset distillation within bayesian active learning framework:
Understanding the effect of data augmentation [63.20765930558542]
アクティブラーニング(AL)は、アノテーションコストとデータセットサイズの削減に対処するため、最近再び注目されている。
本稿では,大規模なセマンティックKITTIデータセットの1/4分の1でALベースのデータセット蒸留を原理的に評価する。
我々は、選択したデータセット構成からのサンプルの60%のみを使用して、データ拡張が完全なデータセット精度を達成することを観察した。
論文 参考訳(メタデータ) (2022-02-06T00:04:21Z) - EVBattery: A Large-Scale Electric Vehicle Dataset for Battery Health and
Capacity Estimation [15.169440280225647]
電気自動車(EV)は二酸化炭素排出量を減らす上で重要な役割を果たしている。
EVの採用が加速するにつれ、EVバッテリーによる安全性の問題が重要な研究トピックとなっている。
この課題に対して,データ駆動方式のベンチマークと開発を行うため,EVバッテリの大規模かつ包括的なデータセットを導入する。
我々のデータセットは、実世界のバッテリーデータに関する最初の大規模な公開データセットであり、既存のデータには数台の車両しか含まれていないか、実験室で収集されている。
論文 参考訳(メタデータ) (2022-01-28T10:06:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。