論文の概要: Towards a Framework for Deep Learning Certification in Safety-Critical Applications Using Inherently Safe Design and Run-Time Error Detection
- arxiv url: http://arxiv.org/abs/2403.14678v1
- Date: Tue, 12 Mar 2024 11:38:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 03:33:23.299579
- Title: Towards a Framework for Deep Learning Certification in Safety-Critical Applications Using Inherently Safe Design and Run-Time Error Detection
- Title(参考訳): 安全設計と実行時エラー検出を用いた安全クリティカルアプリケーションにおけるディープラーニング認定フレームワークの構築
- Authors: Romeo Valentin,
- Abstract要約: 航空や他の安全上重要な分野における現実世界の問題について検討し,認定モデルの要件について検討する。
我々は、(i)本質的に安全な設計と(ii)実行時のエラー検出に基づいて、ディープラーニング認定に向けた新しいフレームワークを構築した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although an ever-growing number of applications employ deep learning based systems for prediction, decision-making, or state estimation, almost no certification processes have been established that would allow such systems to be deployed in safety-critical applications. In this work we consider real-world problems arising in aviation and other safety-critical areas, and investigate their requirements for a certified model. To this end, we investigate methodologies from the machine learning research community aimed towards verifying robustness and reliability of deep learning systems, and evaluate these methodologies with regard to their applicability to real-world problems. Then, we establish a new framework towards deep learning certification based on (i) inherently safe design, and (ii) run-time error detection. Using a concrete use case from aviation, we show how deep learning models can recover disentangled variables through the use of weakly-supervised representation learning. We argue that such a system design is inherently less prone to common model failures, and can be verified to encode underlying mechanisms governing the data. Then, we investigate four techniques related to the run-time safety of a model, namely (i) uncertainty quantification, (ii) out-of-distribution detection, (iii) feature collapse, and (iv) adversarial attacks. We evaluate each for their applicability and formulate a set of desiderata that a certified model should fulfill. Finally, we propose a novel model structure that exhibits all desired properties discussed in this work, and is able to make regression and uncertainty predictions, as well as detect out-of-distribution inputs, while requiring no regression labels to train. We conclude with a discussion of the current state and expected future progress of deep learning certification, and its industrial and social implications.
- Abstract(参考訳): 多くのアプリケーションは、予測、意思決定、状態推定のためにディープラーニングベースのシステムを採用しているが、そのようなシステムを安全クリティカルなアプリケーションにデプロイできる認定プロセスはほとんど確立されていない。
本研究は,航空や他の安全上重要な分野における実世界の問題について考察し,認定モデルの要件について検討する。
そこで本研究では,ディープラーニングシステムの堅牢性と信頼性を検証することを目的とした,機械学習研究コミュニティの方法論を調査し,実世界の問題への適用性について評価する。
そして、我々は深層学習認定のための新しい枠組みを構築した。
(i)本質的に安全な設計、及び
(ii) 実行時のエラー検出。
航空からの具体的なユースケースを用いて、弱い教師付き表現学習を用いることで、深層学習モデルが絡み合った変数を回復する方法を示す。
このようなシステム設計は、本来、一般的なモデル失敗の傾向が低く、データを管理するメカニズムをコード化することが検証可能である、と我々は主張する。
次に,モデルの実行時の安全性に関する4つの手法,すなわちモデルについて検討する。
(i)不確かさの定量化
(二)配当外検知
(三)特徴崩壊、及び
(4)敵の攻撃。
それぞれの適用性を評価し、認定モデルが満たすべきデシラタのセットを定式化する。
最後に,本研究で論じるすべての望ましい特性を示す新しいモデル構造を提案し,レグレッションと不確実性を予測できるとともに,レグレッションラベルをトレーニングすることなく,アウト・オブ・ディストリビューション・インプットを検出することができる。
本稿では,ディープラーニング認定の現状と今後の進歩,産業的・社会的意味について論じる。
関連論文リスト
- Data-Driven Distributionally Robust Safety Verification Using Barrier Certificates and Conditional Mean Embeddings [0.24578723416255752]
問題を非現実的な仮定にシフトすることなく,スケーラブルな形式検証アルゴリズムを開発する。
問題を非現実的な仮定にシフトさせることなく,スケーラブルな形式検証アルゴリズムを開発するためには,バリア証明書の概念を用いる。
本稿では,2乗法最適化とガウス過程エンベロープを用いて効率よくプログラムを解く方法を示す。
論文 参考訳(メタデータ) (2024-03-15T17:32:02Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - A Theoretical and Practical Framework for Evaluating Uncertainty Calibration in Object Detection [1.8843687952462744]
本研究では,不確実性校正の文脈において,物体検出システムを評価するための理論的,実践的な枠組みを提案する。
提案した不確実性校正指標のロバスト性は, 一連の代表的な実験を通して示される。
論文 参考訳(メタデータ) (2023-09-01T14:02:44Z) - A Call to Reflect on Evaluation Practices for Failure Detection in Image
Classification [0.491574468325115]
本稿では,信頼度評価関数のベンチマーク化を初めて実現した大規模実証的研究について述べる。
簡便なソフトマックス応答ベースラインを全体の最高の実行方法として明らかにすることは、現在の評価の劇的な欠点を浮き彫りにする。
論文 参考訳(メタデータ) (2022-11-28T12:25:27Z) - Robust Deep Learning for Autonomous Driving [0.0]
モデル信頼度を確実に推定する新しい基準を導入する:真のクラス確率(TCP)
真のクラスは本質的にテスト時に未知であるため、補助モデルを用いてデータからTCPの基準を学習し、この文脈に適応した特定の学習スキームを導入することを提案する。
本研究は, 既知モデルに基づく新たな不確実性尺度を導入することで, 誤分類と分布外サンプルを共同で検出する課題に対処する。
論文 参考訳(メタデータ) (2022-11-14T22:07:11Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
次に、結果の安全制御器のポイントワイズ実現可能性条件を示す。
これらの条件を利用して、イベントトリガーによるオンラインデータ収集戦略を考案する。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
本稿では,区間分析に基づく半形式的意思決定手法を提案する。
本手法は, 標準ベンチマークに比較して, 形式検証に対して比較結果を得る。
提案手法は, 意思決定モデルにおける安全性特性を効果的に評価することを可能にする。
論文 参考訳(メタデータ) (2020-10-19T11:18:06Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
ディープラーニングモデルのブラックボックスの性質は、彼らがデータから何を学ぶかについて、未回答の疑問を提起している。
GAN(Generative Adversarial Network)とマルチオブジェクトは、監査されたモデルに妥当な攻撃を与えるために使用される。
その実用性は人間の顔の分類タスクの中で示され、提案されたフレームワークの潜在的可能性を明らかにしている。
論文 参考訳(メタデータ) (2020-03-25T11:08:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。