論文の概要: Data-Driven Distributionally Robust Safety Verification Using Barrier Certificates and Conditional Mean Embeddings
- arxiv url: http://arxiv.org/abs/2403.10497v1
- Date: Fri, 15 Mar 2024 17:32:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 16:01:36.218226
- Title: Data-Driven Distributionally Robust Safety Verification Using Barrier Certificates and Conditional Mean Embeddings
- Title(参考訳): バリア証明書と条件付き平均埋め込みを用いたデータ駆動型ロバスト安全性検証
- Authors: Oliver Schön, Zhengang Zhong, Sadegh Soudjani,
- Abstract要約: 問題を非現実的な仮定にシフトすることなく,スケーラブルな形式検証アルゴリズムを開発する。
問題を非現実的な仮定にシフトさせることなく,スケーラブルな形式検証アルゴリズムを開発するためには,バリア証明書の概念を用いる。
本稿では,2乗法最適化とガウス過程エンベロープを用いて効率よくプログラムを解く方法を示す。
- 参考スコア(独自算出の注目度): 0.24578723416255752
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Algorithmic verification of realistic systems to satisfy safety and other temporal requirements has suffered from poor scalability of the employed formal approaches. To design systems with rigorous guarantees, many approaches still rely on exact models of the underlying systems. Since this assumption can rarely be met in practice, models have to be inferred from measurement data or are bypassed completely. Whilst former usually requires the model structure to be known a-priori and immense amounts of data to be available, latter gives rise to a plethora of restrictive mathematical assumptions about the unknown dynamics. In a pursuit of developing scalable formal verification algorithms without shifting the problem to unrealistic assumptions, we employ the concept of barrier certificates, which can guarantee safety of the system, and learn the certificate directly from a compact set of system trajectories. We use conditional mean embeddings to embed data from the system into a reproducing kernel Hilbert space (RKHS) and construct an RKHS ambiguity set that can be inflated to robustify the result w.r.t. a set of plausible transition kernels. We show how to solve the resulting program efficiently using sum-of-squares optimization and a Gaussian process envelope. Our approach lifts the need for restrictive assumptions on the system dynamics and uncertainty, and suggests an improvement in the sample complexity of verifying the safety of a system on a tested case study compared to a state-of-the-art approach.
- Abstract(参考訳): 安全性やその他の時間的要求を満たす現実的なシステムのアルゴリズムによる検証は、採用された形式的アプローチのスケーラビリティの低下に悩まされている。
厳格な保証を持つシステムを設計するには、多くのアプローチは依然として基礎となるシステムの正確なモデルに依存している。
この仮定が実際に満たされることは滅多にないため、モデルは測定データから推測されるか、完全にバイパスされる必要がある。
前者は、通常、モデル構造がアプリオリであり、大量のデータが利用可能であることが要求されるが、後者は未知の力学に関する多くの制限的な数学的仮定を引き起こす。
問題を非現実的な仮定にシフトさせることなく,スケーラブルな形式的検証アルゴリズムを開発するために,システムの安全性を保証するバリア証明書の概念を採用し,システムトラジェクトリのコンパクトな集合から証明書を直接学習する。
条件付き平均埋め込みを用いて、システムのデータを再生可能なカーネルヒルベルト空間(RKHS)に埋め込んで、拡張可能なRKHSあいまい性集合を構築し、その結果を可塑性遷移カーネルの集合のように強固にすることができる。
本稿では,2乗法最適化とガウス過程エンベロープを用いて効率よくプログラムを解く方法を示す。
提案手法は, システムの力学と不確実性に対する制約的な仮定の必要性を軽減し, テストケーススタディにおけるシステムの安全性を, 最先端のアプローチと比較して検証する際の, サンプルの複雑さの向上を示唆している。
関連論文リスト
- Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
本稿では,ラベルフリップ攻撃に対して,FL(Federated Learning)システムを構築するための高度なアプローチを提案する。
本稿では,適応的しきい値設定機構と統合されたコンセンサスに基づく検証プロセスを提案する。
以上の結果から,FLシステムのレジリエンスを高め,ラベルフリップ攻撃の顕著な緩和効果が示唆された。
論文 参考訳(メタデータ) (2024-03-05T20:54:56Z) - Verification of Neural Reachable Tubes via Scenario Optimization and Conformal Prediction [10.40899456282141]
Hamilton-Jacobiリーチビリティ分析は、そのような保証を提供するための一般的な形式的検証ツールである。
DeepReachは、高次元システムのための到達可能なチューブと安全コントローラの合成に使用されている。
本稿では,確率論的安全性を保証するために,頑健なシナリオ最適化と共形予測に基づく2つの検証手法を提案する。
論文 参考訳(メタデータ) (2023-12-14T02:03:36Z) - Learning-Based Optimal Control with Performance Guarantees for Unknown Systems with Latent States [4.4820711784498]
本稿では,潜在状態を持つ未知非線形系に対する最適入力軌道の計算法を提案する。
提案手法の有効性を数値シミュレーションで示す。
論文 参考訳(メタデータ) (2023-03-31T11:06:09Z) - Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions [60.26921219698514]
CBFをベースとした安全クリティカルコントローラのモデル不確実性を考慮した再構成を提案する。
次に、結果の安全制御器のポイントワイズ実現可能性条件を示す。
これらの条件を利用して、イベントトリガーによるオンラインデータ収集戦略を考案する。
論文 参考訳(メタデータ) (2022-08-23T05:02:09Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
本稿では,学習時の安全性維持が不可欠である高次元非線形最適化問題に対する一般的なアプローチを提案する。
LBSGDと呼ばれるアプローチは、慎重に選択されたステップサイズで対数障壁近似を適用することに基づいている。
安全強化学習における政策課題の違反を最小限に抑えるためのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-07-21T11:14:47Z) - Joint Differentiable Optimization and Verification for Certified
Reinforcement Learning [91.93635157885055]
安全クリティカル制御システムのためのモデルベース強化学習では,システム特性を正式に認定することが重要である。
本稿では,強化学習と形式検証を共同で行う枠組みを提案する。
論文 参考訳(メタデータ) (2022-01-28T16:53:56Z) - Learning Robust Output Control Barrier Functions from Safe Expert Demonstrations [50.37808220291108]
本稿では,専門家によるデモンストレーションの部分的な観察から,安全な出力フィードバック制御法を考察する。
まず,安全性を保証する手段として,ロバスト出力制御バリア関数(ROCBF)を提案する。
次に、安全なシステム動作を示す専門家による実証からROCBFを学習するための最適化問題を定式化する。
論文 参考訳(メタデータ) (2021-11-18T23:21:00Z) - Pointwise Feasibility of Gaussian Process-based Safety-Critical Control
under Model Uncertainty [77.18483084440182]
制御バリア関数(CBF)と制御リアプノフ関数(CLF)は、制御システムの安全性と安定性をそれぞれ強化するための一般的なツールである。
本稿では, CBF と CLF を用いた安全クリティカルコントローラにおいて, モデル不確実性に対処するためのガウスプロセス(GP)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-06-13T23:08:49Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Efficient falsification approach for autonomous vehicle validation using
a parameter optimisation technique based on reinforcement learning [6.198523595657983]
自律走行車(AV)の大規模展開は、まだ解決されていない多くの安全上の課題にもかかわらず、差し迫っているように見える。
交通参加者とダイナミックワールドの行動の不確実性は、先進的な自律システムにおいて反応を引き起こす。
本稿では,システム・アンダー・テストを評価するための効率的なファルシフィケーション手法を提案する。
論文 参考訳(メタデータ) (2020-11-16T02:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。