論文の概要: Chain-structured neural architecture search for financial time series forecasting
- arxiv url: http://arxiv.org/abs/2403.14695v1
- Date: Fri, 15 Mar 2024 15:05:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-04-01 03:23:33.637194
- Title: Chain-structured neural architecture search for financial time series forecasting
- Title(参考訳): 連鎖構造型ニューラルネットワークによる財務時系列予測
- Authors: Denis Levchenko, Efstratios Rappos, Shabnam Ataee, Biagio Nigro, Stephan Robert,
- Abstract要約: 連鎖構造探索空間における3つの一般的なニューラルネットワーク探索戦略(ベイズ最適化、ハイパーバンド法、金融時系列予測の文脈における強化学習)を比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We compare three popular neural architecture search strategies on chain-structured search spaces: Bayesian optimization, the hyperband method, and reinforcement learning in the context of financial time series forecasting.
- Abstract(参考訳): 連鎖構造探索空間における3つの一般的なニューラルネットワーク探索戦略(ベイズ最適化、ハイパーバンド法、金融時系列予測の文脈における強化学習)を比較した。
関連論文リスト
- A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
ニューラルアーキテクチャサーチ(NAS)により、リサーチ者は広大なサーチスペースを自動的に探索し、効率的なニューラルネットワークを見つけることができる。
NASは重要なボトルネックに悩まされており、探索プロセス中に多くのアーキテクチャを評価する必要がある。
SMEM-NASは,多集団構造に基づく多目的進化アルゴリズムである。
論文 参考訳(メタデータ) (2024-07-22T12:46:22Z) - Optimizing Time Series Forecasting Architectures: A Hierarchical Neural Architecture Search Approach [17.391148813359088]
本稿では,時系列予測タスクのための階層型ニューラルネットワーク探索手法を提案する。
階層型検索空間の設計により,タスク予測用に設計された多くのアーキテクチャタイプを組み込んだ。
長期予測タスクの結果から,本手法が軽量な高性能予測アーキテクチャを探索できることが示唆された。
論文 参考訳(メタデータ) (2024-06-07T17:02:37Z) - Incorporating Taylor Series and Recursive Structure in Neural Networks
for Time Series Prediction [0.29008108937701327]
時系列分析は物理学、生物学、化学、金融など様々な分野に関係している。
本稿では、ResNet構造から要素を統合するニューラルネットワークアーキテクチャについて紹介し、革新的なTaylorシリーズフレームワークを紹介した。
論文 参考訳(メタデータ) (2024-02-09T14:34:28Z) - DCP-NAS: Discrepant Child-Parent Neural Architecture Search for 1-bit
CNNs [53.82853297675979]
バイナリ重みとアクティベーションを備えた1ビット畳み込みニューラルネットワーク(CNN)は、リソース制限された組み込みデバイスの可能性を示している。
自然なアプローチの1つは、NASの計算とメモリコストを削減するために1ビットCNNを使用することである。
本稿では,1ビットCNNを効率的に探索するためにDCP-NAS(Disrepant Child-Parent Neural Architecture Search)を提案する。
論文 参考訳(メタデータ) (2023-06-27T11:28:29Z) - HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel
Neural Architecture Search [104.45426861115972]
設計したハイパーカーネルを利用して,構造パラメータを直接生成することを提案する。
我々は1次元または3次元の畳み込みを伴う画素レベルの分類と画像レベルの分類を別々に行う3種類のネットワークを得る。
6つの公開データセットに関する一連の実験は、提案手法が最先端の結果を得ることを示した。
論文 参考訳(メタデータ) (2023-04-23T17:27:40Z) - An algorithmic framework for the optimization of deep neural networks architectures and hyperparameters [0.23301643766310373]
本稿では,効率的なディープニューラルネットワークを自動生成するアルゴリズムフレームワークを提案する。
このフレームワークは、進化的有向非巡回グラフ(DAG)に基づいている。
畳み込み(convolutions)、再帰(recurrentence)、密集層( dense layer)といった古典的な操作の混合を可能にするだけでなく、自己注意(self-attention)のようなより新しい操作も可能である。
論文 参考訳(メタデータ) (2023-02-27T08:00:33Z) - Neural Architecture Search for Spiking Neural Networks [10.303676184878896]
スパイキングニューラルネットワーク(SNN)は、従来のニューラルネットワーク(ANN)に代わるエネルギー効率の高い代替手段として大きな注目を集めている。
従来のSNN手法のほとんどはANNのようなアーキテクチャを使用しており、これはSNNにおけるバイナリ情報の時間的シーケンス処理に準最適性能を提供する。
より優れたSNNアーキテクチャを見つけるための新しいニューラルネットワーク探索(NAS)手法を提案する。
論文 参考訳(メタデータ) (2022-01-23T16:34:27Z) - RANK-NOSH: Efficient Predictor-Based Architecture Search via Non-Uniform
Successive Halving [74.61723678821049]
予算の浪費を回避するため,早期に性能の低いアーキテクチャのトレーニングを終了する階層的スケジューリングアルゴリズムであるNOn-uniform Successive Halving (NOSH)を提案する。
予測器に基づくアーキテクチャ探索をペア比較でランク付けする学習として定式化する。
その結果、RANK-NOSHは検索予算を5倍に削減し、様々な空間やデータセットにおける従来の最先端予測手法よりも、競争力やパフォーマンスの向上を実現した。
論文 参考訳(メタデータ) (2021-08-18T07:45:21Z) - On the Exploitation of Neuroevolutionary Information: Analyzing the Past
for a More Efficient Future [60.99717891994599]
本稿では,神経進化過程から情報を抽出し,メタモデルを構築するアプローチを提案する。
本稿では, 異なる特徴を有する生成的対向ネットワークの神経進化的探索における最良の構造について検討する。
論文 参考訳(メタデータ) (2021-05-26T20:55:29Z) - Task-Adaptive Neural Network Retrieval with Meta-Contrastive Learning [34.27089256930098]
本稿では,与えられたタスクに対して最適な事前学習ネットワークを検索するニューラルネットワーク検索手法を提案する。
データセットとネットワークとの類似性を最大化するために、コントラスト損失を伴うクロスモーダルな潜在空間をメタラーニングすることによって、このフレームワークを訓練する。
提案手法の有効性を,既存のNASベースラインに対して10個の実世界のデータセット上で検証する。
論文 参考訳(メタデータ) (2021-03-02T06:30:51Z) - Weak NAS Predictors Are All You Need [91.11570424233709]
最近の予測器ベースのnasアプローチは、アーキテクチャとパフォーマンスのペアをサンプリングし、プロキシの精度を予測するという2つの重要なステップで問題を解決しようとする。
私たちはこのパラダイムを、アーキテクチャ空間全体をカバーする複雑な予測子から、ハイパフォーマンスなサブスペースへと徐々に進む弱い予測子へとシフトさせます。
NAS-Bench-101 および NAS-Bench-201 で最高の性能のアーキテクチャを見つけるためのサンプルを少なくし、NASNet 検索空間における最先端の ImageNet パフォーマンスを実現します。
論文 参考訳(メタデータ) (2021-02-21T01:58:43Z) - Firefly Neural Architecture Descent: a General Approach for Growing
Neural Networks [50.684661759340145]
firefly neural architecture descentは、ニューラルネットワークを漸進的かつ動的に成長させるための一般的なフレームワークである。
ホタルの降下は、より広く、より深くネットワークを柔軟に成長させ、正確だがリソース効率のよいニューラルアーキテクチャを学習するために応用できることを示す。
特に、サイズは小さいが、最先端の手法で学習したネットワークよりも平均精度が高いネットワークを学習する。
論文 参考訳(メタデータ) (2021-02-17T04:47:18Z) - Trilevel Neural Architecture Search for Efficient Single Image
Super-Resolution [127.92235484598811]
本稿では,高効率単一画像超解像(SR)のための3レベルニューラルネットワーク探索法を提案する。
離散探索空間をモデル化するために、離散探索空間に新たな連続緩和を適用し、ネットワークパス、セル操作、カーネル幅の階層的混合を構築する。
階層型スーパーネット方式による最適化を行うため,効率的な探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-17T12:19:49Z) - Effective, Efficient and Robust Neural Architecture Search [4.273005643715522]
敵攻撃の最近の進歩は、ニューラルアーキテクチャサーチ(NAS)によって探索されたディープニューラルネットワークの脆弱性を示している
本稿では,ニューラルネットワークアーキテクチャの性能,堅牢性,資源制約を考慮し,ニューラルネットワークアーキテクチャを探索する,効率的で効率的かつロバストなニューラルネットワーク探索手法を提案する。
ベンチマークデータセットを用いた実験により,提案手法は,モデルサイズと同等の分類精度で,逆向きに頑健なアーキテクチャを見出すことができることがわかった。
論文 参考訳(メタデータ) (2020-11-19T13:46:23Z) - Smooth Variational Graph Embeddings for Efficient Neural Architecture
Search [41.62970837629573]
本研究では,探索空間からニューラルネットワークをスムーズにエンコードし,正確に再構築できる2面変分グラフオートエンコーダを提案する。
ENASアプローチ,NAS-Bench-101およびNAS-Bench-201探索空間で定義されたニューラルネットワークに対する提案手法の評価を行った。
論文 参考訳(メタデータ) (2020-10-09T17:05:41Z) - Off-Policy Reinforcement Learning for Efficient and Effective GAN
Architecture Search [50.40004966087121]
本稿では,GANアーキテクチャ探索のための強化学習に基づくニューラルアーキテクチャ探索手法を提案する。
鍵となる考え方は、よりスムーズなアーキテクチャサンプリングのためのマルコフ決定プロセス(MDP)として、GANアーキテクチャ探索問題を定式化することである。
我々は,従来の政策によって生成されたサンプルを効率的に活用する,非政治的なGANアーキテクチャ探索アルゴリズムを利用する。
論文 参考訳(メタデータ) (2020-07-17T18:29:17Z) - FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining [65.39532971991778]
サンプル選択とランキングの両方を導くことで、アーキテクチャとトレーニングのレシピを共同でスコアする精度予測器を提案する。
高速な進化的検索をCPU分で実行し、さまざまなリソース制約に対するアーキテクチャと準備のペアを生成します。
FBNetV3は最先端のコンパクトニューラルネットワークのファミリーを構成しており、自動と手動で設計された競合より優れている。
論文 参考訳(メタデータ) (2020-06-03T05:20:21Z) - DC-NAS: Divide-and-Conquer Neural Architecture Search [108.57785531758076]
本稿では,ディープ・ニューラル・アーキテクチャーを効果的かつ効率的に探索するためのディバイド・アンド・コンカ(DC)手法を提案する。
ImageNetデータセットで75.1%の精度を達成しており、これは同じ検索空間を使った最先端の手法よりも高い。
論文 参考訳(メタデータ) (2020-05-29T09:02:16Z) - An Introduction to Neural Architecture Search for Convolutional Networks [0.0]
ニューラルアーキテクチャサーチ(英: Neural Architecture Search、NAS)は、最適化アルゴリズムを利用して最適なニューラルネットワークアーキテクチャを設計する研究分野である。
我々は、畳み込みネットワークのためのNASの基本概念と、探索空間、アルゴリズム、評価技術の大きな進歩について紹介する。
論文 参考訳(メタデータ) (2020-05-22T09:33:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。