論文の概要: An Introduction to Neural Architecture Search for Convolutional Networks
- arxiv url: http://arxiv.org/abs/2005.11074v1
- Date: Fri, 22 May 2020 09:33:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 08:14:34.356538
- Title: An Introduction to Neural Architecture Search for Convolutional Networks
- Title(参考訳): 畳み込みネットワークのためのニューラルアーキテクチャ探索入門
- Authors: George Kyriakides and Konstantinos Margaritis
- Abstract要約: ニューラルアーキテクチャサーチ(英: Neural Architecture Search、NAS)は、最適化アルゴリズムを利用して最適なニューラルネットワークアーキテクチャを設計する研究分野である。
我々は、畳み込みネットワークのためのNASの基本概念と、探索空間、アルゴリズム、評価技術の大きな進歩について紹介する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Architecture Search (NAS) is a research field concerned with utilizing
optimization algorithms to design optimal neural network architectures. There
are many approaches concerning the architectural search spaces, optimization
algorithms, as well as candidate architecture evaluation methods. As the field
is growing at a continuously increasing pace, it is difficult for a beginner to
discern between major, as well as emerging directions the field has followed.
In this work, we provide an introduction to the basic concepts of NAS for
convolutional networks, along with the major advances in search spaces,
algorithms and evaluation techniques.
- Abstract(参考訳): neural architecture search (nas) は最適化アルゴリズムを利用して最適なニューラルネットワークアーキテクチャを設計する研究分野である。
アーキテクチャ探索空間、最適化アルゴリズム、および候補となるアーキテクチャ評価方法に関して、多くのアプローチがある。
フィールドが継続的に成長しているため、初心者がメジャーとそれに続く新しい方向を区別することは困難である。
本研究では,畳み込みネットワークにおけるNASの基本概念と,探索空間,アルゴリズム,評価技術の進歩を紹介する。
関連論文リスト
- EM-DARTS: Hierarchical Differentiable Architecture Search for Eye Movement Recognition [54.99121380536659]
眼球運動バイオメトリックスは、高い安全性の識別により注目されている。
深層学習(DL)モデルは近年,眼球運動認識に成功している。
DLアーキテクチャはまだ人間の事前知識によって決定されている。
眼球運動認識のためのDLアーキテクチャを自動設計する階層的微分可能なアーキテクチャ探索アルゴリズムEM-DARTSを提案する。
論文 参考訳(メタデータ) (2024-09-22T13:11:08Z) - Evolution and Efficiency in Neural Architecture Search: Bridging the Gap Between Expert Design and Automated Optimization [1.7385545432331702]
本稿では,ニューラルネットワーク検索の概要について概説する。
手動設計から自動化された計算駆動アプローチへの進化を強調している。
医療画像や自然言語処理など、さまざまな分野の応用を強調している。
論文 参考訳(メタデータ) (2024-02-11T18:27:29Z) - HiveNAS: Neural Architecture Search using Artificial Bee Colony
Optimization [0.0]
本研究では,ニューラルネットワーク探索のための人工蜂コロニー最適化の実現可能性を評価する。
提案するフレームワークであるHiveNASは、最先端のSwarm IntelligenceベースのNASフレームワークを短時間で上回ります。
論文 参考訳(メタデータ) (2022-11-18T14:11:47Z) - Search Space Adaptation for Differentiable Neural Architecture Search in
Image Classification [15.641353388251465]
微分可能なニューラルネットワークサーチ(NAS)は、検索コストを単一のネットワークをトレーニングするレベルに削減することで大きな影響を与える。
本稿では,探索範囲を導入することで,探索空間の適応スキームを提案する。
画像分類タスクにおいて, ProxylessNAS を用いて提案手法の有効性を示す。
論文 参考訳(メタデータ) (2022-06-05T05:27:12Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
本稿では,ニューラルネットワークに基づくアルゴリズムの古典的最適化フレームワークへの導入に関する批判的分析を行う。
性能, 転送可能性, 計算コスト, 大規模インスタンスなど, これらのアルゴリズムの基本的側面を分析するために, 総合的研究を行った。
論文 参考訳(メタデータ) (2022-05-03T07:54:56Z) - Neural Architecture Search for Speech Emotion Recognition [72.1966266171951]
本稿では,SERモデルの自動構成にニューラルアーキテクチャサーチ(NAS)技術を適用することを提案する。
NASはモデルパラメータサイズを維持しながらSER性能(54.89%から56.28%)を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-03-31T10:16:10Z) - Accelerating Neural Architecture Exploration Across Modalities Using
Genetic Algorithms [5.620334754517149]
多目的アーキテクチャ探索を加速するために, 遺伝的アルゴリズムと軽量に訓練された客観予測器を反復サイクルで組み合わせる方法を示す。
NASの研究はコンピュータビジョンのタスクを中心に行われており、最近になって自然言語処理の急速な発展など他のモダリティも深く研究されている。
論文 参考訳(メタデータ) (2022-02-25T20:01:36Z) - NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural
Network Synthesis [53.106414896248246]
本稿では,分析者がドメイン知識を注入することで,解のサブグラフ空間を効果的に構築し,ネットワーク探索をガイドするフレームワークを提案する。
このテクニックを反復的に適用することで、アナリストは、与えられたアプリケーションに対して最高のパフォーマンスのニューラルネットワークアーキテクチャに収束することができる。
論文 参考訳(メタデータ) (2020-09-28T01:48:45Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z) - A Comprehensive Survey of Neural Architecture Search: Challenges and
Solutions [48.76705090826339]
ニューラルネットワーク探索(NAS)は革命的アルゴリズムであり、関連する研究は複雑でリッチである。
まず、初期のNASアルゴリズムの特徴の概要から始め、これらの初期のNASアルゴリズムの問題を要約する。
さらに,これらの研究の詳細な分析,比較,要約を行う。
論文 参考訳(メタデータ) (2020-06-01T13:08:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。