論文の概要: Compiler generated feedback for Large Language Models
- arxiv url: http://arxiv.org/abs/2403.14714v1
- Date: Mon, 18 Mar 2024 23:25:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 21:41:26.745600
- Title: Compiler generated feedback for Large Language Models
- Title(参考訳): コンパイラが生成した大規模言語モデルへのフィードバック
- Authors: Dejan Grubisic, Chris Cummins, Volker Seeker, Hugh Leather,
- Abstract要約: 我々は,LLVMアセンブリのコードサイズを最適化するために,コンパイラフィードバックを備えたLarge Language Modelを用いたコンパイラ最適化において,新しいパラダイムを導入する。
このモデルは、最適化されていないLLVM IRを入力として取り、最適化されたIR、最適な最適化パス、最適化されていないIRと最適化されたIRの両方の命令数を生成する。
- 参考スコア(独自算出の注目度): 3.86901256759401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel paradigm in compiler optimization powered by Large Language Models with compiler feedback to optimize the code size of LLVM assembly. The model takes unoptimized LLVM IR as input and produces optimized IR, the best optimization passes, and instruction counts of both unoptimized and optimized IRs. Then we compile the input with generated optimization passes and evaluate if the predicted instruction count is correct, generated IR is compilable, and corresponds to compiled code. We provide this feedback back to LLM and give it another chance to optimize code. This approach adds an extra 0.53% improvement over -Oz to the original model. Even though, adding more information with feedback seems intuitive, simple sampling techniques achieve much higher performance given 10 or more samples.
- Abstract(参考訳): 我々は,LLVMアセンブリのコードサイズを最適化するために,コンパイラフィードバックを備えたLarge Language Modelを用いたコンパイラ最適化において,新しいパラダイムを導入する。
このモデルは、最適化されていないLLVM IRを入力として取り、最適化されたIR、最適な最適化パス、最適化されていないIRと最適化されたIRの両方の命令数を生成する。
そして、生成された最適化で入力をコンパイルし、予測された命令数が正しいか評価し、生成されたIRがコンパイル可能で、コンパイルされたコードに対応する。
このフィードバックを LLM に返して,コードを最適化する新たな機会を与えています。
このアプローチでは、オリジナルのモデルに-Ozよりも0.53%改善されている。
フィードバックでより多くの情報を追加するのは直感的であるように思えるが、単純なサンプリング技術は10以上のサンプルが与えられた場合、はるかに高いパフォーマンスを達成する。
関連論文リスト
- Meta Large Language Model Compiler: Foundation Models of Compiler Optimization [21.161784011956126]
大規模言語モデル(LLM)は、様々なソフトウェア工学やコーディングタスクにまたがる顕著な機能を示している。
しかしながら、コード領域におけるそれらのアプリケーションとコンパイラの最適化については、まだ未検討である。
Meta Large Language Model Compiler (LLM Compiler)は、コード最適化タスクのための、堅牢で、オープンに利用可能な、事前訓練されたモデルのスイートである。
論文 参考訳(メタデータ) (2024-06-27T21:47:48Z) - Should AI Optimize Your Code? A Comparative Study of Current Large Language Models Versus Classical Optimizing Compilers [0.0]
大規模言語モデル(LLM)は、コード最適化方法論に革命をもたらすAI駆動アプローチの可能性に関する興味深い疑問を提起する。
本稿では、GPT-4.0とCodeLlama-70Bの2つの最先端大言語モデルと従来の最適化コンパイラの比較分析を行う。
論文 参考訳(メタデータ) (2024-06-17T23:26:41Z) - Two Optimizers Are Better Than One: LLM Catalyst Empowers Gradient-Based Optimization for Prompt Tuning [69.95292905263393]
我々は,勾配に基づく最適化と大規模言語モデル(MsLL)が相互補完的であることを示し,協調的な最適化手法を提案する。
私たちのコードはhttps://www.guozix.com/guozix/LLM-catalystでリリースされています。
論文 参考訳(メタデータ) (2024-05-30T06:24:14Z) - CompilerDream: Learning a Compiler World Model for General Code Optimization [58.87557583347996]
汎用コード最適化のためのモデルベース強化学習手法であるCompilerDreamを紹介する。
最適化パスの固有の特性を正確にシミュレートするコンパイラの世界モデルと、このモデルで訓練されたエージェントから、効率的な最適化戦略を生成する。
さまざまなデータセットを網羅し、LLVMのビルトイン最適化や、値予測とエンドツーエンドコード最適化の両方の設定における最先端メソッドを超越している。
論文 参考訳(メタデータ) (2024-04-24T09:20:33Z) - AdaLomo: Low-memory Optimization with Adaptive Learning Rate [59.64965955386855]
大規模言語モデルに対する適応学習率(AdaLomo)を用いた低メモリ最適化を提案する。
AdaLomoはAdamWと同等の結果を得ると同時に、メモリ要件を大幅に削減し、大きな言語モデルをトレーニングするためのハードウェア障壁を低くする。
論文 参考訳(メタデータ) (2023-10-16T09:04:28Z) - Large Language Models for Compiler Optimization [22.52765975286403]
コードサイズに対してLLVMアセンブリを最適化するために,スクラッチからトレーニングしたトランスフォーマーモデルを提案する。
最適化前後の命令数と最適化コード自体を予測する。
提案手法は,コンパイラよりも命令数の削減が3.0%向上する。
論文 参考訳(メタデータ) (2023-09-11T22:11:46Z) - Learning Performance-Improving Code Edits [107.21538852090208]
本稿では,大規模言語モデル(LLM)を高レベルプログラム最適化に適用するためのフレームワークを提案する。
まず、競争力のある77,000以上のC++プログラミングサブミッションペアによる、人間のプログラマによるパフォーマンス改善編集のデータセットをキュレートする。
提案手法は,検索をベースとした少数ショットプロンプトとチェーン・オブ・シンクレットを提案し,その微調整には,自己再生に基づく性能条件付き生成と合成データ拡張が含まれる。
論文 参考訳(メタデータ) (2023-02-15T18:59:21Z) - Learning to Superoptimize Real-world Programs [79.4140991035247]
本稿では,ニューラルシークエンス・ツー・シーケンス・モデルを用いて,実世界のプログラムを最適化するフレームワークを提案する。
我々は、x86-64アセンブリでオープンソースプロジェクトから抽出された25万以上の実世界の関数からなるデータセットであるBig Assemblyベンチマークを紹介した。
論文 参考訳(メタデータ) (2021-09-28T05:33:21Z) - Enabling Retargetable Optimizing Compilers for Quantum Accelerators via
a Multi-Level Intermediate Representation [78.8942067357231]
我々は、最適化され、再ターゲット可能で、事前コンパイルが可能なマルチレベル量子古典中間表現(IR)を提案する。
ゲートベースのOpenQASM 3言語全体をサポートし、共通量子プログラミングパターンのカスタム拡張と構文の改善を提供します。
私たちの研究は、通常のPythonのアプローチよりも1000倍高速で、スタンドアロンの量子言語コンパイラよりも5~10倍高速なコンパイル時間を実現しています。
論文 参考訳(メタデータ) (2021-09-01T17:29:47Z) - Deep Data Flow Analysis [14.583644439728895]
ProGraMLは、ディープラーニングのためのプログラム全体のセマンティクスのポータブル表現である。
コンパイラ解析のための現在および将来の学習手法をベンチマークする。
本稿では, ProGraMLを用いて, ダウンストリームコンパイラ最適化タスクにおいて, 標準解析を学習し, 性能を向上できることを示す。
論文 参考訳(メタデータ) (2020-11-21T03:29:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。