論文の概要: Two Optimizers Are Better Than One: LLM Catalyst Empowers Gradient-Based Optimization for Prompt Tuning
- arxiv url: http://arxiv.org/abs/2405.19732v3
- Date: Thu, 6 Jun 2024 04:59:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 20:03:47.924757
- Title: Two Optimizers Are Better Than One: LLM Catalyst Empowers Gradient-Based Optimization for Prompt Tuning
- Title(参考訳): LLM触媒によるプロンプトチューニングの勾配最適化
- Authors: Zixian Guo, Ming Liu, Zhilong Ji, Jinfeng Bai, Yiwen Guo, Wangmeng Zuo,
- Abstract要約: 我々は,勾配に基づく最適化と大規模言語モデル(MsLL)が相互補完的であることを示し,協調的な最適化手法を提案する。
私たちのコードはhttps://www.guozix.com/guozix/LLM-catalystでリリースされています。
- 参考スコア(独自算出の注目度): 69.95292905263393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning a skill generally relies on both practical experience by doer and insightful high-level guidance by instructor. Will this strategy also work well for solving complex non-convex optimization problems? Here, a common gradient-based optimizer acts like a disciplined doer, making locally optimal update at each step. Recent methods utilize large language models (LLMs) to optimize solutions for concrete problems by inferring from natural language instructions, akin to a high-level instructor. In this paper, we show that these two optimizers are complementary to each other, suggesting a collaborative optimization approach. The gradient-based optimizer and LLM-based optimizer are combined in an interleaved manner. We instruct LLMs using task descriptions and timely optimization trajectories recorded during gradient-based optimization. Inferred results from LLMs are used as restarting points for the next stage of gradient optimization. By leveraging both the locally rigorous gradient-based optimizer and the high-level deductive LLM-based optimizer, our combined optimization method consistently yields improvements over competitive baseline prompt tuning methods. Our results demonstrate the synergistic effect of conventional gradient-based optimization and the inference ability of LLMs. The code is released at https://github.com/guozix/LLM-catalyst.
- Abstract(参考訳): スキルの習得は一般的に、実践的な実践経験とインストラクターによる洞察に富んだハイレベルガイダンスの両方に依存します。
この戦略は複雑な非凸最適化問題の解決にも有効か?
ここでは、共通の勾配ベースのオプティマイザが規律のあるドーラのように動作し、各ステップで局所的に最適な更新を行う。
近年の手法では,大規模言語モデル(LLM)を用いて,高レベルのインストラクターと同様,自然言語命令から推論することで,具体的問題の解法を最適化している。
本稿では,これら2つのオプティマイザが相互補完的であることを示し,協調最適化手法を提案する。
勾配ベースオプティマイザとLLMベースのオプティマイザをインターリーブ方式で組み合わせる。
我々は,勾配に基づく最適化中に記録されたタスク記述とタイムリーな最適化トラジェクトリを用いてLCMを指示する。
勾配最適化の次の段階における再起動点として, LLMによる推定結果を用いる。
局所的な厳密な勾配に基づく最適化手法と高レベルな導出性LLMに基づく最適化手法を併用することにより、競争ベースライン・プロンプト・チューニング法よりも常に改善が得られている。
本研究は,従来の勾配最適化の相乗効果とLLMの推論能力を示すものである。
コードはhttps://github.com/guozix/LLM-catalystでリリースされる。
関連論文リスト
- Improving Existing Optimization Algorithms with LLMs [0.9668407688201361]
本稿では,Large Language Models (LLM) が既存の最適化アルゴリズムをどのように拡張するかを検討する。
事前学習した知識を用いて、革新的なバリエーションと実装戦略を提案する能力を示す。
以上の結果から, GPT-4oによる代替案はCMSAのエキスパート設計よりも優れていた。
論文 参考訳(メタデータ) (2025-02-12T10:58:57Z) - Less is More: Extreme Gradient Boost Rank-1 Adaption for Efficient Finetuning of LLMs [75.11449420928139]
微調整型大規模言語モデル(LLM)は、訓練済みモデルを下流タスクに適応させる上で重要な技術となっている。
Low-Rank Adaptation (LoRA) は有望な解決法として登場したが、低ランク適応の実用性能と理論的最適性の間にはギャップがある。
本稿では,このギャップを埋める新しいフレームワークであるeXtreme Gradient Boosting LoRAを提案する。
論文 参考訳(メタデータ) (2024-10-25T17:07:13Z) - LLM-based Optimization of Compound AI Systems: A Survey [64.39860384538338]
複合AIシステムでは、LLMコール、レトリバー、コードインタプリタ、ツールなどのコンポーネントが相互接続される。
近年の進歩により, LLM を用いたパラメータのエンドツーエンド最適化が可能となった。
本稿では,複合AIシステムのLCMに基づく最適化の原理と動向について述べる。
論文 参考訳(メタデータ) (2024-10-21T18:06:25Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
大規模言語モデル (LLM) に基づくマルチエージェントシステム (MAS) は協調的問題解決において顕著な可能性を示している。
通信効率の低下、スケーラビリティの低下、効果的なパラメータ更新方法の欠如などです。
本稿では,コミュニケーション効率とタスク効率を両立させ,これらの課題に対処する新しいフレームワークOptimaを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:00:06Z) - Search-Based LLMs for Code Optimization [16.843870288512363]
開発者によって書かれたコードは、通常効率上の問題に悩まされ、様々なパフォーマンス上のバグを含んでいる。
最近の研究は、タスクをシーケンス生成問題とみなし、大規模言語モデル(LLM)のようなディープラーニング(DL)技術を活用している。
改良された最適化手法の反復的洗練と発見を可能にする,SBLLM という検索ベース LLM フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-22T06:59:46Z) - A Problem-Oriented Perspective and Anchor Verification for Code Optimization [43.28045750932116]
大規模言語モデル(LLM)は、様々なプログラミングタスクを解く際、顕著な能力を示している。
本稿では,LLMが最小実行時間に最適化する能力について検討する。
論文 参考訳(メタデータ) (2024-06-17T16:10:10Z) - The Importance of Directional Feedback for LLM-based Optimizers [23.669705029245645]
本研究では,自然言語と数値フィードバックを用いてテキスト空間の問題を解決する対話型言語モデル (LLM) の可能性について検討する。
我々は,過去の最適化トレースから指向性フィードバックを合成し,繰り返しよりも信頼性の高い改善を実現するLLMベースの新しい設計を行う。
論文 参考訳(メタデータ) (2024-05-26T05:22:35Z) - Large Language Model-Based Evolutionary Optimizer: Reasoning with
elitism [1.1463861912335864]
大規模言語モデル(LLM)は、顕著な推論能力を示している。
本稿では,LLMが様々なシナリオにまたがるゼロショット最適化能力を有していることを主張する。
LLMを用いた数値最適化手法を提案する。
論文 参考訳(メタデータ) (2024-03-04T13:57:37Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
本稿では,大規模言語モデル(LLM)に基づくプロンプトの設計について検討する。
モデルパラメータ学習における2つの重要な要素を同定する。
グラディエントにインスパイアされた Prompt ベースの GPO を開発した。
論文 参考訳(メタデータ) (2024-02-27T15:05:32Z) - Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark [166.40879020706151]
本稿では、微調整時のメモリコスト低減のためのソリューションとして、BPフリーゼロオーダー最適化(ZO)への移行を提案する。
従来のZO-SGD法とは異なり、我々の研究はより広い範囲のZO最適化手法に探索を広げる。
本研究は,タスクアライメントの重要性,前方勾配法の役割,アルゴリズムの複雑さと微調整性能のバランスについて,これまで見過ごされてきた最適化原理を明らかにした。
論文 参考訳(メタデータ) (2024-02-18T14:08:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。