論文の概要: Reversible Jump Attack to Textual Classifiers with Modification Reduction
- arxiv url: http://arxiv.org/abs/2403.14731v1
- Date: Thu, 21 Mar 2024 04:54:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 21:21:55.258922
- Title: Reversible Jump Attack to Textual Classifiers with Modification Reduction
- Title(参考訳): 修正型テキスト分類器への可逆ジャンプ攻撃
- Authors: Mingze Ni, Zhensu Sun, Wei Liu,
- Abstract要約: Reversible Jump Attack (RJA) とMetropolis-Hasting Modification Reduction (MMR) が提案されている。
RJA-MMRは、攻撃性能、非受容性、流布性、文法の正しさにおいて、現在の最先端手法よりも優れている。
- 参考スコア(独自算出の注目度): 8.247761405798874
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies on adversarial examples expose vulnerabilities of natural language processing (NLP) models. Existing techniques for generating adversarial examples are typically driven by deterministic hierarchical rules that are agnostic to the optimal adversarial examples, a strategy that often results in adversarial samples with a suboptimal balance between magnitudes of changes and attack successes. To this end, in this research we propose two algorithms, Reversible Jump Attack (RJA) and Metropolis-Hasting Modification Reduction (MMR), to generate highly effective adversarial examples and to improve the imperceptibility of the examples, respectively. RJA utilizes a novel randomization mechanism to enlarge the search space and efficiently adapts to a number of perturbed words for adversarial examples. With these generated adversarial examples, MMR applies the Metropolis-Hasting sampler to enhance the imperceptibility of adversarial examples. Extensive experiments demonstrate that RJA-MMR outperforms current state-of-the-art methods in attack performance, imperceptibility, fluency and grammar correctness.
- Abstract(参考訳): 近年,自然言語処理(NLP)モデルの脆弱性が報告されている。
既存の敵の例を生成する技術は、典型的には、最適な敵の例とは無関係な決定論的階層的ルールによって駆動される。
そこで本研究では,Reversible Jump Attack (RJA) とMetropolis-Hasting Modification Reduction (MMR) の2つのアルゴリズムを提案する。
RJAは、新しいランダム化機構を使用して、探索空間を拡大し、多くの摂動語に効率よく適応する。
これらの生成した敵の例では、MMRはMetropolis-Hastingサンプルを応用し、敵の例の非受容性を高める。
大規模な実験により、RJA-MMRは攻撃性能、非受容性、流布性、文法の正当性において現在の最先端の手法よりも優れていることが示された。
関連論文リスト
- Improving Adversarial Training using Vulnerability-Aware Perturbation
Budget [7.430861908931903]
敵対的訓練(AT)は、敵対的攻撃に対するディープニューラルネットワーク(DNN)の堅牢性を効果的に改善する。
本稿では,AT の逆例に摂動境界を割り当てる簡易で安価な脆弱性認識型再重み付け関数を提案する。
実験の結果,提案手法は様々な攻撃に対してATアルゴリズムの頑健さを真に向上させることがわかった。
論文 参考訳(メタデータ) (2024-03-06T21:50:52Z) - Adversarial Examples Detection with Enhanced Image Difference Features
based on Local Histogram Equalization [20.132066800052712]
本稿では,高頻度情報強調戦略に基づく逆例検出フレームワークを提案する。
このフレームワークは、敵の例と通常の例との特徴的差異を効果的に抽出し、増幅することができる。
論文 参考訳(メタデータ) (2023-05-08T03:14:01Z) - Generating Adversarial Examples with Better Transferability via Masking
Unimportant Parameters of Surrogate Model [6.737574282249396]
非重要マスキングパラメータ(MUP)を用いた転送攻撃における敵例の転送可能性の向上を提案する。
MUPのキーとなるアイデアは、事前訓練されたサロゲートモデルを洗練して、転送ベースの攻撃を強化することである。
論文 参考訳(メタデータ) (2023-04-14T03:06:43Z) - Frauds Bargain Attack: Generating Adversarial Text Samples via Word
Manipulation Process [9.269657271777527]
本研究では,Fraud's Bargain Attackと呼ばれる新たな手法を提案する。
ランダム化機構を用いて探索空間を拡張し、高品質な敵の例を生成する。
成功率、不受容性、文質の点で他の方法よりも優れています。
論文 参考訳(メタデータ) (2023-03-01T06:04:25Z) - In and Out-of-Domain Text Adversarial Robustness via Label Smoothing [64.66809713499576]
多様なNLPタスクの基本モデルにおいて,ラベルの平滑化戦略によって提供される対角的ロバスト性について検討する。
実験の結果,ラベルのスムース化は,BERTなどの事前学習モデルにおいて,様々な攻撃に対して,逆方向の堅牢性を大幅に向上させることがわかった。
また,予測信頼度とロバスト性の関係を解析し,ラベルの平滑化が敵の例に対する過度な信頼誤差を減少させることを示した。
論文 参考訳(メタデータ) (2022-12-20T14:06:50Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise
Rollouts [52.844741540236285]
マルチエージェント強化学習(MARL)におけるモデルベース手法について検討する。
AORPO(Adaptive Opponent-wise Rollout Policy)と呼ばれる新しい分散型モデルベースのMARL法を提案する。
論文 参考訳(メタデータ) (2021-05-07T16:20:22Z) - Generalizing Adversarial Examples by AdaBelief Optimizer [6.243028964381449]
本稿では,AdaBelief反復高速勾配符号法を提案し,その逆例を一般化する。
提案手法は,最先端の攻撃手法と比較して,ホワイトボックス設定における敵例を効果的に生成することができる。
転送速度は、最新の攻撃方法よりも7%-21%高いです。
論文 参考訳(メタデータ) (2021-01-25T07:39:16Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - Contextualized Perturbation for Textual Adversarial Attack [56.370304308573274]
逆例は自然言語処理(NLP)モデルの脆弱性を明らかにする。
本稿では,フロートおよび文法的出力を生成するContextualized AdversaRial Example生成モデルであるCLAREを提案する。
論文 参考訳(メタデータ) (2020-09-16T06:53:15Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
逆行訓練(AT)は、逆行例によるトレーニングデータを増やすことにより、モデルロバスト性を改善する最も効果的な手法の一つである。
既存のAT手法の多くは、敵の例を作らせるために特定の攻撃を採用しており、他の目に見えない攻撃に対する信頼性の低い堅牢性につながっている。
本稿では,ロバストモデル学習のための新しいフレームワークであるADTを紹介する。
論文 参考訳(メタデータ) (2020-02-14T12:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。