New physics in spin entanglement
- URL: http://arxiv.org/abs/2403.14757v1
- Date: Thu, 21 Mar 2024 18:00:17 GMT
- Title: New physics in spin entanglement
- Authors: Mateusz Duch, Alessandro Strumia, Arsenii Titov,
- Abstract summary: We propose a theory that preserves spin-summed scattering and decay rates at tree level while affecting particle spins.
This is achieved by breaking the Lorentz group in a non-local way.
- Score: 44.99833362998488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a theory that preserves spin-summed scattering and decay rates at tree level while affecting particle spins. This is achieved by breaking the Lorentz group in a non-local way that tries avoiding stringent constraints, for example leaving unbroken the maximal sub-group SIM(2). As a phenomenological application, this new physics can alter the spins of top-antitop pairs (and consequently their entanglement) produced in $pp$ collisions without impacting their rates. Some observables affected by loops involving top quarks with modified entanglement receive corrections.
Related papers
- Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Spin squeezing in open Heisenberg spin chains [0.0]
We show that spin squeezing can be generated in the Heisenberg spin-1/2 chain with periodic boundary conditions.
A broad family of twisting models can be simulated by the system in the weak coupling regime.
arXiv Detail & Related papers (2023-02-20T08:32:53Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Single particle entanglement in the mid-and ultra-relativistic regime [0.0]
In this work we analyze the amount of entanglement associated with the spin and momentum degrees of freedom of a single massive spin-$frac12$ particle.
We show that the natural basis to discuss the geometrical effects of the boost are the helicity eigenstates in the rest frame.
arXiv Detail & Related papers (2021-03-13T16:19:37Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z) - Qubit spin ice [58.720142291102135]
We report a realization of spin ice in a lattice of superconducting qubits.
The ground state is classically described by the ice rule, and we achieve control over a fragile degeneracy point.
The demonstrated qubit control lays the groundwork for potential future study of topologically protected artificial quantum spin liquids.
arXiv Detail & Related papers (2020-07-21T01:50:40Z) - Fractional quantum Hall physics and higher-order momentum correlations
in a few spinful fermionic contact-interacting ultracold atoms in rotating
traps [0.0]
This paper provides benchmark results for $N$-body spin-unresolved, as well as spin-resolved, momentum correlations measurable in time-of-flight experiments with individual particle detection.
The application of a small perturbing stirring potential induces, at the ensuing avoided crossings, formation of symmetry broken states exhibiting ordered polygonal-ring structures.
Analysis of the calculated LLL wavefunction enables a two-dimensional generalization of the Girardeau one-dimensional 'fermionization' scheme, originally invoked for mapping of bosonic-type wave functions to those of spinless fermions.
arXiv Detail & Related papers (2020-06-17T02:08:13Z) - Position and spin in relativistic quantum mechanics [68.8204255655161]
The position and spin operators in the Foldy-Wouthuysen representation are quantum-mechanical counterparts of the classical position and spin variables.
The spin-orbit interaction does not exist for a free particle if the conventional operators of the orbital angular momentum and the rest-frame spin are used.
arXiv Detail & Related papers (2020-03-14T07:49:40Z) - Effects of the transverse coherence length in relativistic collisions [0.0]
We study the role of a transverse coherence length of the packets in collisions of particles.
In $ee, ep$, and $pp$ collisions the interference results in corrections to the plane-wave cross sections.
beyond the perturbative QCD, these corrections become only moderately attenuated allowing one to probe a phase of the hadronic amplitude.
arXiv Detail & Related papers (2020-01-31T23:36:52Z) - Simulating fermions in spin-dependent potentials with spin models on an
energy lattice [0.0]
We study spin-1/2 fermions in spin dependent potentials under the emphspin model approximation.
We show that the spin model approximation is accurate for weak interactions.
We present numerical techniques that are useful for analysis of spin models on an energy lattice.
arXiv Detail & Related papers (2020-01-14T04:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.