論文の概要: On the exploitation of DCT statistics for cropping detectors
- arxiv url: http://arxiv.org/abs/2403.14789v1
- Date: Thu, 21 Mar 2024 19:05:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 19:16:33.032445
- Title: On the exploitation of DCT statistics for cropping detectors
- Title(参考訳): 収穫検知器におけるDCT統計の活用について
- Authors: Claudio Vittorio Ragaglia, Francesco Guarnera, Sebastiano Battiato,
- Abstract要約: 本研究では,DCT統計を用いた画像分解能分類器について検討し,画像の本来の分解能を検出することを目的とした。
その結果, 収穫画像と収穫画像の区別における分類器の信頼性が示され, 元の分解能の信頼性が評価された。
この研究は、複数の領域にわたる画像解析と使用法を変換する可能性を持つ、この分野における新しい視点を開放する。
- 参考スコア(独自算出の注目度): 5.039808715733204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: {The study of frequency components derived from Discrete Cosine Transform (DCT) has been widely used in image analysis. In recent years it has been observed that significant information can be extrapolated from them about the lifecycle of the image, but no study has focused on the analysis between them and the source resolution of the image. In this work, we investigated a novel image resolution classifier that employs DCT statistics with the goal to detect the original resolution of images; in particular the insight was exploited to address the challenge of identifying cropped images. Training a Machine Learning (ML) classifier on entire images (not cropped), the generated model can leverage this information to detect cropping. The results demonstrate the classifier's reliability in distinguishing between cropped and not cropped images, providing a dependable estimation of their original resolution. This advancement has significant implications for image processing applications, including digital security, authenticity verification, and visual quality analysis, by offering a new tool for detecting image manipulations and enhancing qualitative image assessment. This work opens new perspectives in the field, with potential to transform image analysis and usage across multiple domains.}
- Abstract(参考訳): 離散コサイン変換(DCT)から派生した周波数成分の研究は画像解析に広く用いられている。
近年、画像のライフサイクルについて重要な情報が外挿できることが観察されているが、画像間の分析と画像のソース解像度についての研究は行われていない。
本研究では,DCT統計を用いた画像分解能分類器について,画像の本来の分解能を検出する目的で検討した。
画像全体の機械学習(ML)分類器(トリミングではない)をトレーニングすると、生成されたモデルは、この情報を利用してトリミングを検出することができる。
その結果, 収穫画像と収穫画像の区別における分類器の信頼性が示され, 元の分解能の信頼性が評価された。
この進歩は、画像操作を検出し、定性的画像評価を強化する新しいツールを提供することにより、デジタルセキュリティ、認証検証、視覚的品質分析を含む画像処理アプリケーションに重大な影響を与える。
この研究は、複数の領域にわたる画像解析と使用法を変換する可能性を持つ、この分野における新しい視点を開放する。
※
関連論文リスト
- Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
実画像27,600枚、223,400枚、AI拡張画像1,472,700枚を含むSEMI-TRUTHSを紹介する。
それぞれの画像には、検出器のロバスト性の標準化と目標評価のためのメタデータが添付されている。
以上の結果から,現状の検出器は摂動の種類や程度,データ分布,拡張方法に様々な感度を示すことが示唆された。
論文 参考訳(メタデータ) (2024-11-12T01:17:27Z) - Robustness Testing of Black-Box Models Against CT Degradation Through Test-Time Augmentation [1.7788343872869767]
医用画像のセグメンテーションと物体検出のためのディープラーニングモデルは、臨床製品としてますます利用されつつある。
トレーニングデータの詳細はめったに提供されないため、トレーニングディストリビューションとケースが異なる場合、モデルは予期せず失敗する可能性がある。
画像品質変化に対するこれらのモデルのロバスト性をテストする方法を提案する。
論文 参考訳(メタデータ) (2024-06-27T22:17:49Z) - FSBI: Deepfakes Detection with Frequency Enhanced Self-Blended Images [17.707379977847026]
本稿では、ディープフェイク検出のための周波数強調自己ブレンド画像手法を提案する。
提案手法はFF++とCeleb-DFデータセットで評価されている。
論文 参考訳(メタデータ) (2024-06-12T20:15:00Z) - Perceptual Artifacts Localization for Image Synthesis Tasks [59.638307505334076]
我々は10,168個の画像からなる新しいデータセットを導入し,それぞれに知覚的アーティファクトラベルを付加した。
提案したデータセットに基づいてトレーニングされたセグメンテーションモデルは、さまざまなタスクにまたがるアーティファクトを効果的にローカライズする。
生成した画像の知覚的アーティファクトをシームレスに修正する,革新的なズームイン・インペインティングパイプラインを提案する。
論文 参考訳(メタデータ) (2023-10-09T10:22:08Z) - Explainable Image Quality Assessment for Medical Imaging [0.0]
質の悪い医療画像は誤診につながる可能性がある。
本稿では,説明可能な画像品質評価システムを提案し,その考え方を2つの異なる目的に対して検証する。
本研究では,サリエンシ検出器の忠実度を測定するために,様々な手法を適用した。
我々は,NormGradがObject-CXRで0.853点,LVOTデータセットで0.611点,繰り返しポイントゲームで0.853点に達することで,他のサリエンシ検出器よりも顕著に向上したことを示す。
論文 参考訳(メタデータ) (2023-03-25T14:18:39Z) - Learning Conditional Knowledge Distillation for Degraded-Reference Image
Quality Assessment [157.1292674649519]
劣化参照IQA(DR-IQA)という実用的な解を提案する。
DR-IQAはIRモデルの入力、劣化したイメージを参照として利用する。
私たちの結果は、フル参照設定のパフォーマンスに近いものもあります。
論文 参考訳(メタデータ) (2021-08-18T02:35:08Z) - Ensembling with Deep Generative Views [72.70801582346344]
生成モデルは、色やポーズの変化などの現実世界の変動を模倣する人工画像の「ビュー」を合成することができる。
そこで本研究では, 画像分類などの下流解析作業において, 実画像に適用できるかどうかを検討する。
StyleGAN2を再生増強の源として使用し、顔の属性、猫の顔、車を含む分類タスクについてこの設定を調査します。
論文 参考訳(メタデータ) (2021-04-29T17:58:35Z) - Just Noticeable Difference for Machine Perception and Generation of
Regularized Adversarial Images with Minimal Perturbation [8.920717493647121]
人間の知覚のジャスト通知差(JND)の概念に触発された機械知覚の尺度を紹介します。
本稿では,機械学習モデルが偽ラベルを出力することで画像の変化を検出するまで,画像を付加雑音で反復的に歪曲する逆画像生成アルゴリズムを提案する。
CIFAR10、ImageNet、MS COCOデータセット上で、アルゴリズムが生成する対向画像の定性的および定量的評価を行います。
論文 参考訳(メタデータ) (2021-02-16T11:01:55Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。