On the exploitation of DCT statistics for cropping detectors
- URL: http://arxiv.org/abs/2403.14789v1
- Date: Thu, 21 Mar 2024 19:05:31 GMT
- Title: On the exploitation of DCT statistics for cropping detectors
- Authors: Claudio Vittorio Ragaglia, Francesco Guarnera, Sebastiano Battiato,
- Abstract summary: In this work, we investigated a novel image resolution classifier that employs DCT statistics with the goal to detect the original resolution of images.
The results demonstrate the classifier's reliability in distinguishing between cropped and not cropped images, providing a dependable estimation of their original resolution.
This work opens new perspectives in the field, with potential to transform image analysis and usage across multiple domains.
- Score: 5.039808715733204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: {The study of frequency components derived from Discrete Cosine Transform (DCT) has been widely used in image analysis. In recent years it has been observed that significant information can be extrapolated from them about the lifecycle of the image, but no study has focused on the analysis between them and the source resolution of the image. In this work, we investigated a novel image resolution classifier that employs DCT statistics with the goal to detect the original resolution of images; in particular the insight was exploited to address the challenge of identifying cropped images. Training a Machine Learning (ML) classifier on entire images (not cropped), the generated model can leverage this information to detect cropping. The results demonstrate the classifier's reliability in distinguishing between cropped and not cropped images, providing a dependable estimation of their original resolution. This advancement has significant implications for image processing applications, including digital security, authenticity verification, and visual quality analysis, by offering a new tool for detecting image manipulations and enhancing qualitative image assessment. This work opens new perspectives in the field, with potential to transform image analysis and usage across multiple domains.}
Related papers
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.
In this paper, we investigate how detection performance varies across model backbones, types, and datasets.
We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
We introduce SEMI-TRUTHS, featuring 27,600 real images, 223,400 masks, and 1,472,700 AI-augmented images.
Each augmented image is accompanied by metadata for standardized and targeted evaluation of detector robustness.
Our findings suggest that state-of-the-art detectors exhibit varying sensitivities to the types and degrees of perturbations, data distributions, and augmentation methods used.
arXiv Detail & Related papers (2024-11-12T01:17:27Z) - Robustness Testing of Black-Box Models Against CT Degradation Through Test-Time Augmentation [1.7788343872869767]
Deep learning models for medical image segmentation and object detection are becoming increasingly available as clinical products.
As details are rarely provided about the training data, models may unexpectedly fail when cases differ from those in the training distribution.
A method to test the robustness of these models against CT image quality variation is presented.
arXiv Detail & Related papers (2024-06-27T22:17:49Z) - Perceptual Artifacts Localization for Image Synthesis Tasks [59.638307505334076]
We introduce a novel dataset comprising 10,168 generated images, each annotated with per-pixel perceptual artifact labels.
A segmentation model, trained on our proposed dataset, effectively localizes artifacts across a range of tasks.
We propose an innovative zoom-in inpainting pipeline that seamlessly rectifies perceptual artifacts in the generated images.
arXiv Detail & Related papers (2023-10-09T10:22:08Z) - Explainable Image Quality Assessment for Medical Imaging [0.0]
Poor-quality medical images may lead to misdiagnosis.
We propose an explainable image quality assessment system and validate our idea on two different objectives.
We apply a variety of techniques to measure the faithfulness of the saliency detectors.
We show that NormGrad has significant gains over other saliency detectors by reaching a repeated Pointing Game score of 0.853 for Object-CXR and 0.611 for LVOT datasets.
arXiv Detail & Related papers (2023-03-25T14:18:39Z) - Learning Conditional Knowledge Distillation for Degraded-Reference Image
Quality Assessment [157.1292674649519]
We propose a practical solution named degraded-reference IQA (DR-IQA)
DR-IQA exploits the inputs of IR models, degraded images, as references.
Our results can even be close to the performance of full-reference settings.
arXiv Detail & Related papers (2021-08-18T02:35:08Z) - Ensembling with Deep Generative Views [72.70801582346344]
generative models can synthesize "views" of artificial images that mimic real-world variations, such as changes in color or pose.
Here, we investigate whether such views can be applied to real images to benefit downstream analysis tasks such as image classification.
We use StyleGAN2 as the source of generative augmentations and investigate this setup on classification tasks involving facial attributes, cat faces, and cars.
arXiv Detail & Related papers (2021-04-29T17:58:35Z) - Just Noticeable Difference for Machine Perception and Generation of
Regularized Adversarial Images with Minimal Perturbation [8.920717493647121]
We introduce a measure for machine perception inspired by the concept of Just Noticeable Difference (JND) of human perception.
We suggest an adversarial image generation algorithm, which iteratively distorts an image by an additive noise until the machine learning model detects the change in the image by outputting a false label.
We evaluate the adversarial images generated by our algorithm both qualitatively and quantitatively on CIFAR10, ImageNet, and MS COCO datasets.
arXiv Detail & Related papers (2021-02-16T11:01:55Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.