Unifying Lane-Level Traffic Prediction from a Graph Structural Perspective: Benchmark and Baseline
- URL: http://arxiv.org/abs/2403.14941v1
- Date: Fri, 22 Mar 2024 04:21:40 GMT
- Title: Unifying Lane-Level Traffic Prediction from a Graph Structural Perspective: Benchmark and Baseline
- Authors: Shuhao Li, Yue Cui, Jingyi Xu, Libin Li, Lingkai Meng, Weidong Yang, Fan Zhang, Xiaofang Zhou,
- Abstract summary: This paper extensively analyzes and categorizes existing research in lane-level traffic prediction.
It introduces a simple baseline model, GraphMLP, based on graph structure and prediction networks.
We have replicated codes not publicly available in existing studies and assessed various models in terms of effectiveness, efficiency, and applicability.
- Score: 21.37853568400125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic prediction has long been a focal and pivotal area in research, witnessing both significant strides from city-level to road-level predictions in recent years. With the advancement of Vehicle-to-Everything (V2X) technologies, autonomous driving, and large-scale models in the traffic domain, lane-level traffic prediction has emerged as an indispensable direction. However, further progress in this field is hindered by the absence of comprehensive and unified evaluation standards, coupled with limited public availability of data and code. This paper extensively analyzes and categorizes existing research in lane-level traffic prediction, establishes a unified spatial topology structure and prediction tasks, and introduces a simple baseline model, GraphMLP, based on graph structure and MLP networks. We have replicated codes not publicly available in existing studies and, based on this, thoroughly and fairly assessed various models in terms of effectiveness, efficiency, and applicability, providing insights for practical applications. Additionally, we have released three new datasets and corresponding codes to accelerate progress in this field, all of which can be found on https://github.com/ShuhaoLii/TITS24LaneLevel-Traffic-Benchmark.
Related papers
- Strada-LLM: Graph LLM for traffic prediction [62.2015839597764]
A considerable challenge in traffic prediction lies in handling the diverse data distributions caused by vastly different traffic conditions.
We propose a graph-aware LLM for traffic prediction that considers proximal traffic information.
We adopt a lightweight approach for efficient domain adaptation when facing new data distributions in few-shot fashion.
arXiv Detail & Related papers (2024-10-28T09:19:29Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - SemanticFormer: Holistic and Semantic Traffic Scene Representation for Trajectory Prediction using Knowledge Graphs [3.733790302392792]
Tray prediction in autonomous driving relies on accurate representation of all relevant contexts of the driving scene.
We present SemanticFormer, an approach for predicting multimodal trajectories by reasoning over a traffic scene graph.
arXiv Detail & Related papers (2024-04-30T09:11:04Z) - TPLLM: A Traffic Prediction Framework Based on Pretrained Large Language Models [27.306180426294784]
We introduce TPLLM, a novel traffic prediction framework leveraging Large Language Models (LLMs)
In this framework, we construct a sequence embedding layer based on Conal Neural Networks (LoCNNs) and a graph embedding layer based on Graph Contemporalal Networks (GCNs) to extract sequence features and spatial features.
Experiments on two real-world datasets demonstrate commendable performance in both full-sample and few-shot prediction scenarios.
arXiv Detail & Related papers (2024-03-04T17:08:57Z) - nuScenes Knowledge Graph -- A comprehensive semantic representation of
traffic scenes for trajectory prediction [6.23221362105447]
Trajectory prediction in traffic scenes involves accurately forecasting the behaviour of surrounding vehicles.
It is crucial to consider contextual information, including the driving path of vehicles, road topology, lane dividers, and traffic rules.
This paper presents an approach that utilizes knowledge graphs to model the diverse entities and their semantic connections within traffic scenes.
arXiv Detail & Related papers (2023-12-15T10:40:34Z) - Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving? [84.17711168595311]
End-to-end autonomous driving has emerged as a promising research direction to target autonomy from a full-stack perspective.
nuScenes dataset, characterized by relatively simple driving scenarios, leads to an under-utilization of perception information in end-to-end models.
We introduce a new metric to evaluate whether the predicted trajectories adhere to the road.
arXiv Detail & Related papers (2023-12-05T11:32:31Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - STG4Traffic: A Survey and Benchmark of Spatial-Temporal Graph Neural Networks for Traffic Prediction [9.467593700532401]
This paper provides a systematic review of graph learning strategies and commonly used graph convolution algorithms.
We then conduct a comprehensive analysis of the strengths and weaknesses of recently proposed spatial-temporal graph network models.
We build a study called STG4Traffic using the deep learning framework PyTorch to establish a standardized and scalable benchmark on two types of traffic datasets.
arXiv Detail & Related papers (2023-07-02T06:56:52Z) - Continuous-Time and Multi-Level Graph Representation Learning for
Origin-Destination Demand Prediction [52.0977259978343]
This paper proposes a Continuous-time and Multi-level dynamic graph representation learning method for Origin-Destination demand prediction (CMOD)
The state vectors keep historical transaction information and are continuously updated according to the most recently happened transactions.
Experiments are conducted on two real-world datasets from Beijing Subway and New York Taxi, and the results demonstrate the superiority of our model against the state-of-the-art approaches.
arXiv Detail & Related papers (2022-06-30T03:37:50Z) - Few-Shot Traffic Prediction with Graph Networks using Locale as
Relational Inductive Biases [7.173242326298134]
In many cities, the available amount of traffic data is substantially below the minimum requirement due to the data collection expense.
This paper develops a graph network (GN)-based deep learning model LocaleGn that depicts the traffic dynamics using localized data.
It is also demonstrated that the learned knowledge from LocaleGn can be transferred across cities.
arXiv Detail & Related papers (2022-03-08T09:46:50Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
We propose a new LiDAR prediction framework that is based on generative models namely Variational Recurrent Neural Networks (VRNNs)
Our algorithm is able to address the limitations of previous video prediction frameworks when dealing with sparse data by spatially inpainting the depth maps in the upcoming frames.
We present a sparse version of VRNNs and an effective self-supervised training method that does not require any labels.
arXiv Detail & Related papers (2021-02-19T11:56:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.