論文の概要: Generative Active Learning for Image Synthesis Personalization
- arxiv url: http://arxiv.org/abs/2403.14987v2
- Date: Tue, 16 Apr 2024 04:15:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 22:26:44.312077
- Title: Generative Active Learning for Image Synthesis Personalization
- Title(参考訳): 画像合成パーソナライズのための生成能動学習
- Authors: Xulu Zhang, Wengyu Zhang, Xiao-Yong Wei, Jinlin Wu, Zhaoxiang Zhang, Zhen Lei, Qing Li,
- Abstract要約: 本稿では,伝統的に識別モデルを用いて研究されてきた能動的学習の生成モデルへの応用について検討する。
生成モデル上でアクティブな学習を行う上での最大の課題は、クエリのオープンな性質にある。
問合せ処理を半開問題に変換するために,アンカー方向の概念を導入する。
- 参考スコア(独自算出の注目度): 57.01364199734464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a pilot study that explores the application of active learning, traditionally studied in the context of discriminative models, to generative models. We specifically focus on image synthesis personalization tasks. The primary challenge in conducting active learning on generative models lies in the open-ended nature of querying, which differs from the closed form of querying in discriminative models that typically target a single concept. We introduce the concept of anchor directions to transform the querying process into a semi-open problem. We propose a direction-based uncertainty sampling strategy to enable generative active learning and tackle the exploitation-exploration dilemma. Extensive experiments are conducted to validate the effectiveness of our approach, demonstrating that an open-source model can achieve superior performance compared to closed-source models developed by large companies, such as Google's StyleDrop. The source code is available at https://github.com/zhangxulu1996/GAL4Personalization.
- Abstract(参考訳): 本稿では,従来の識別モデルを用いて研究されてきたアクティブラーニングを生成モデルに適用するパイロット研究について述べる。
具体的には、画像合成パーソナライズタスクに焦点を当てる。
生成モデルにおいてアクティブな学習を行う上での最大の課題は、単一の概念をターゲットとする識別モデルにおけるクローズドなクエリ形式とは異なる、クエリのオープンな性質にある。
問合せ処理を半開問題に変換するために,アンカー方向の概念を導入する。
そこで本稿では,創発的アクティブラーニングを可能にする方向ベース不確実性サンプリング戦略を提案し,活用探索ジレンマに対処する。
提案手法の有効性を検証するため,GoogleのStyleDropのような大企業が開発したクローズドソースモデルと比較して,オープンソースモデルの方が優れた性能が得られることを示した。
ソースコードはhttps://github.com/zhangxulu1996/GAL4Personalizationで公開されている。
関連論文リスト
- Deep Generative Models in Robotics: A Survey on Learning from Multimodal Demonstrations [52.11801730860999]
近年、ロボット学習コミュニティは、大規模なデータセットの複雑さを捉えるために、深層生成モデルを使うことへの関心が高まっている。
本稿では,エネルギーベースモデル,拡散モデル,アクションバリューマップ,生成的敵ネットワークなど,コミュニティが探求してきたさまざまなモデルについて述べる。
また,情報生成から軌道生成,コスト学習に至るまで,深層生成モデルを用いた様々なアプリケーションについて述べる。
論文 参考訳(メタデータ) (2024-08-08T11:34:31Z) - Bridging Generative and Discriminative Models for Unified Visual
Perception with Diffusion Priors [56.82596340418697]
本稿では,豊富な生成前駆体を含む事前学習型安定拡散(SD)モデルと,階層的表現を統合可能な統一型ヘッド(Uヘッド)と,識別前駆体を提供する適応型専門家からなる,シンプルで効果的なフレームワークを提案する。
包括的調査では、異なる時間ステップで潜伏変数に隠された知覚の粒度や様々なU-netステージなど、バーマスの潜在的な特性が明らかになった。
有望な結果は,有望な学習者としての拡散モデルの可能性を示し,情報的かつ堅牢な視覚表現の確立にその意義を定めている。
論文 参考訳(メタデータ) (2024-01-29T10:36:57Z) - Generative Model-based Feature Knowledge Distillation for Action
Recognition [11.31068233536815]
本稿では,軽量学生モデルの学習のための生成モデルを用いた,革新的な知識蒸留フレームワークについて紹介する。
提案手法の有効性は,多種多様な人気データセットに対する総合的な実験によって実証される。
論文 参考訳(メタデータ) (2023-12-14T03:55:29Z) - LMC: Large Model Collaboration with Cross-assessment for Training-Free
Open-Set Object Recognition [13.703679771847506]
本研究では,異なる既成の大規模モデルを学習自由な方法で協調させることにより,その課題に対処する,Large Model Collaboration (LMC) という新しいフレームワークを提案する。
また,提案フレームワークをいくつかの新しい設計に組み込んで,大規模モデルから暗黙的な知識を効果的に抽出する。
論文 参考訳(メタデータ) (2023-09-22T10:43:55Z) - Introducing Foundation Models as Surrogate Models: Advancing Towards
More Practical Adversarial Attacks [15.882687207499373]
箱なしの敵攻撃は、AIシステムにとってより実用的で難しいものになりつつある。
本稿では,サロゲートモデルとして基礎モデルを導入することにより,逆攻撃を下流タスクとして再放送する。
論文 参考訳(メタデータ) (2023-07-13T08:10:48Z) - Class-Incremental Mixture of Gaussians for Deep Continual Learning [15.49323098362628]
本稿では,ガウスモデルの混合を連続学習フレームワークに組み込むことを提案する。
固定抽出器を用いたメモリフリーシナリオにおいて,本モデルが効果的に学習可能であることを示す。
論文 参考訳(メタデータ) (2023-07-09T04:33:19Z) - A Curriculum-style Self-training Approach for Source-Free Semantic Segmentation [91.13472029666312]
ソースフリーなドメイン適応型セマンティックセマンティックセグメンテーションのためのカリキュラムスタイルの自己学習手法を提案する。
提案手法は, ソースフリーなセマンティックセグメンテーションタスクにおいて, 合成-実-実-実-実-実-実-非実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実
論文 参考訳(メタデータ) (2021-06-22T10:21:39Z) - Which Model to Transfer? Finding the Needle in the Growing Haystack [27.660318887140203]
我々は後悔というよく知られた概念を通じてこの問題の形式化を提供する。
タスク非依存とタスク認識の両方の手法が,後悔を招きかねないことを示す。
そこで我々は,既存の手法よりも優れた,シンプルで効率的なハイブリッド検索戦略を提案する。
論文 参考訳(メタデータ) (2020-10-13T14:00:22Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
ディープラーニングモデルのブラックボックスの性質は、彼らがデータから何を学ぶかについて、未回答の疑問を提起している。
GAN(Generative Adversarial Network)とマルチオブジェクトは、監査されたモデルに妥当な攻撃を与えるために使用される。
その実用性は人間の顔の分類タスクの中で示され、提案されたフレームワークの潜在的可能性を明らかにしている。
論文 参考訳(メタデータ) (2020-03-25T11:08:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。