論文の概要: LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement
- arxiv url: http://arxiv.org/abs/2403.15042v1
- Date: Fri, 22 Mar 2024 08:57:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 18:08:17.692961
- Title: LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement
- Title(参考訳): LLM2LLM: 新たな反復データ拡張によるLDMの強化
- Authors: Nicholas Lee, Thanakul Wattanawong, Sehoon Kim, Karttikeya Mangalam, Sheng Shen, Gopala Anumanchipali, Michael W. Mahoney, Kurt Keutzer, Amir Gholami,
- Abstract要約: LLM2LLMは、教師のLLMを使用して、特定のタスクの微調整に使用できる追加データを追加することで、小さなシードデータセットを強化する。
GSM8Kデータセットでは最大24.2%、CaseHOLDでは32.6%、SNIPSでは32.0%、TRECでは52.6%、SST-2では39.8%の改善が達成された。
- 参考スコア(独自算出の注目度): 79.31084387589968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pretrained large language models (LLMs) are currently state-of-the-art for solving the vast majority of natural language processing tasks. While many real-world applications still require fine-tuning to reach satisfactory levels of performance, many of them are in the low-data regime, making fine-tuning challenging. To address this, we propose LLM2LLM, a targeted and iterative data augmentation strategy that uses a teacher LLM to enhance a small seed dataset by augmenting additional data that can be used for fine-tuning on a specific task. LLM2LLM (1) fine-tunes a baseline student LLM on the initial seed data, (2) evaluates and extracts data points that the model gets wrong, and (3) uses a teacher LLM to generate synthetic data based on these incorrect data points, which are then added back into the training data. This approach amplifies the signal from incorrectly predicted data points by the LLM during training and reintegrates them into the dataset to focus on more challenging examples for the LLM. Our results show that LLM2LLM significantly enhances the performance of LLMs in the low-data regime, outperforming both traditional fine-tuning and other data augmentation baselines. LLM2LLM reduces the dependence on labor-intensive data curation and paves the way for more scalable and performant LLM solutions, allowing us to tackle data-constrained domains and tasks. We achieve improvements up to 24.2% on the GSM8K dataset, 32.6% on CaseHOLD, 32.0% on SNIPS, 52.6% on TREC and 39.8% on SST-2 over regular fine-tuning in the low-data regime using a LLaMA2-7B student model.
- Abstract(参考訳): 事前訓練された大規模言語モデル(LLM)は、現在、自然言語処理タスクの大部分を解決するための最先端技術である。
多くの現実世界のアプリケーションは、パフォーマンスの満足できるレベルに達するのに微調整を必要とするが、その多くが低データ状態にあるため、微調整が難しい。
そこで本研究では,LLM2LLMを提案する。LLM2LLMは,教師のLLMを用いて,特定のタスクの微調整に使用可能なデータを追加することで,小さなシードデータセットの強化を行う。
LLM2LLM (1) 最初のシードデータに基づいてベースラインの学生LSMを微調整し、(2)モデルが間違っているデータポイントを評価し、抽出し、(3)教師のLSMを使用して、これらの誤ったデータポイントに基づいて合成データを生成し、トレーニングデータに追加する。
このアプローチは、トレーニング中にLLMが誤って予測したデータポイントから信号を増幅し、データセットに再統合して、LLMのより難しい例に集中する。
以上の結果から,LLM2LLMは従来の微調整およびデータ拡張ベースラインよりも優れ,低データ方式におけるLCMの性能を著しく向上させることが示された。
LLM2LLMは、労働集約的なデータキュレーションへの依存を減らし、よりスケーラブルでパフォーマンスの高いLCMソリューションの道を開く。
我々はGSM8Kデータセットで最大24.2%、CaseHOLDで32.6%、SNIPSで32.0%、TRECで52.6%、SST-2で39.8%の改善を実現した。
関連論文リスト
- Enhancing Discriminative Tasks by Guiding the Pre-trained Language Model with Large Language Model's Experience [4.814313782484443]
大規模言語モデル (LLM) と事前訓練型言語モデル (LM) は多くのソフトウェア工学のタスクにおいて驚くべき成功を収めた。
我々は、LLMを用いてドメイン固有のデータを生成し、目標タスクにおける事前学習されたLMの性能を向上させる。
論文 参考訳(メタデータ) (2024-08-16T06:37:59Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Regurgitative Training: The Value of Real Data in Training Large Language Models [1.2815904071470703]
LLMの性能に及ぼす「相対的学習」の影響について検討した。
退行訓練がLSMの性能を著しく向上させる強い証拠が得られている。
本稿では,3つの異なる戦略を提案して評価する。
論文 参考訳(メタデータ) (2024-07-03T18:42:55Z) - Automated Data Curation for Robust Language Model Fine-Tuning [13.8454385440986]
本稿では,データセットのチューニングを行うための自動データキュレーションパイプライン CLEAR を提案する。
CLEARは、どのトレーニングデータが低品質であるかを見積もる。
実験の結果、CLEARは多くのデータセットやモデルにまたがって微調整されたモデルの性能を一貫して改善していることがわかった。
論文 参考訳(メタデータ) (2024-03-19T14:44:45Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
本稿では,Large Language Models (LLMs) の知識を低データ構造におけるデータ拡張に活用したCLLMを紹介する。
従来のジェネレータと比較して,低データ方式におけるCLLMの優れた性能を示す。
論文 参考訳(メタデータ) (2023-12-19T12:34:46Z) - Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs [67.38165028487242]
そこで我々は,DSnoT(Dynamic Sparse No Training, 動的スパース・ノー・トレーニング)を導入した。
動的スパーストレーニングにインスパイアされたDSnoTは、密度とスパースLLM間の再構成誤差を最小限に抑える。
本稿は, LLMのスパースを, 効率的なトレーニング自由な方法で微調整し, 新たな会場をオープンして, LLMの空間性に大きな可能性を拡大する方法について, 新たな知見を提供する。
論文 参考訳(メタデータ) (2023-10-13T07:38:52Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。