論文の概要: Integrating multiscale topology in digital pathology with pyramidal graph convolutional networks
- arxiv url: http://arxiv.org/abs/2403.15068v1
- Date: Fri, 22 Mar 2024 09:48:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 17:58:20.402670
- Title: Integrating multiscale topology in digital pathology with pyramidal graph convolutional networks
- Title(参考訳): ピラミッドグラフ畳み込みネットワークを用いたデジタル病理におけるマルチスケールトポロジーの統合
- Authors: Victor Ibañez, Przemyslaw Szostak, Quincy Wong, Konstanty Korski, Samaneh Abbasi-Sureshjani, Alvaro Gomariz,
- Abstract要約: グラフ畳み込みネットワーク(GCN)は、デジタル病理学における畳み込みニューラルネットワークを用いた複数インスタンス学習の強力な代替手段として登場した。
提案するマルチスケールGCN (MS-GCN) は,スライド画像全体において複数の倍率レベルにまたがる情報を活用することでこの問題に対処する。
MS-GCNは、既存の単一磁化GCN法よりも優れた性能を示す。
- 参考スコア(独自算出の注目度): 0.10995326465245926
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph convolutional networks (GCNs) have emerged as a powerful alternative to multiple instance learning with convolutional neural networks in digital pathology, offering superior handling of structural information across various spatial ranges - a crucial aspect of learning from gigapixel H&E-stained whole slide images (WSI). However, graph message-passing algorithms often suffer from oversmoothing when aggregating a large neighborhood. Hence, effective modeling of multi-range interactions relies on the careful construction of the graph. Our proposed multi-scale GCN (MS-GCN) tackles this issue by leveraging information across multiple magnification levels in WSIs. MS-GCN enables the simultaneous modeling of long-range structural dependencies at lower magnifications and high-resolution cellular details at higher magnifications, akin to analysis pipelines usually conducted by pathologists. The architecture's unique configuration allows for the concurrent modeling of structural patterns at lower magnifications and detailed cellular features at higher ones, while also quantifying the contribution of each magnification level to the prediction. Through testing on different datasets, MS-GCN demonstrates superior performance over existing single-magnification GCN methods. The enhancement in performance and interpretability afforded by our method holds promise for advancing computational pathology models, especially in tasks requiring extensive spatial context.
- Abstract(参考訳): グラフ畳み込みネットワーク(GCN)は、デジタル病理学における畳み込みニューラルネットワークによる複数のインスタンス学習の強力な代替手段として登場し、様々な空間範囲にわたる構造情報の優れたハンドリングを提供する。
しかし、グラフメッセージパッシングアルゴリズムは、大きな近所を集約する場合、しばしば過密に悩まされる。
したがって、マルチレンジ相互作用の効果的なモデリングは、グラフの注意深く構成に依存する。
提案するマルチスケールGCN (MS-GCN) は,WSIの複数の倍率レベルにまたがる情報を活用することでこの問題に対処する。
MS-GCNは、病理学者が通常行う分析パイプラインと同様に、低い倍率での長距離構造依存と高い倍率での高解像度セル詳細を同時にモデル化することができる。
アーキテクチャのユニークな構成は、より低い倍率で構造パターンを同時にモデル化し、より高い倍率で詳細なセル特徴をモデル化すると同時に、各倍率レベルの予測への寄与を定量化できる。
異なるデータセットをテストすることで、MS-GCNは既存の単一磁化GCNメソッドよりも優れたパフォーマンスを示す。
本手法による性能向上と解釈可能性の向上は,特に広い空間環境を必要とするタスクにおいて,計算病理モデルの発展を約束する。
関連論文リスト
- GRASP: GRAph-Structured Pyramidal Whole Slide Image Representation [4.5869791542071]
本稿では,スライド画像全体(WSI)をデジタル病理学で処理するためのグラフ構造化多重画像化フレームワークGRASPを提案する。
我々のアプローチは、WSIの処理における病理学者の振舞いと、WSIの階層構造から得られる利益をエミュレートするために設計されている。
従来のプール機構の代わりに収束ベースのノードアグリゲーションを導入するGRASPは、2つの異なるがんデータセットに対して最先端の手法より優れている。
論文 参考訳(メタデータ) (2024-02-06T00:03:44Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
暗黙グラフニューラルネットワーク(GNN)は、基礎となるグラフの長距離依存性をキャプチャするために提案されている。
暗黙的GNNの2つの弱点は、長距離依存を捉えるための限られた有効範囲による制約付き表現性と、複数の解像度でグラフ上のマルチスケール情報をキャプチャする能力の欠如である。
グラフ上のマルチスケール構造をモデル化できる暗黙の層(MGNNI)を持つマルチスケールグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-15T18:18:55Z) - Convolutional Learning on Multigraphs [153.20329791008095]
我々は、多グラフ上の畳み込み情報処理を開発し、畳み込み多グラフニューラルネットワーク(MGNN)を導入する。
情報拡散の複雑なダイナミクスを多グラフのエッジのクラス間で捉えるために、畳み込み信号処理モデルを定式化する。
我々は,計算複雑性を低減するため,サンプリング手順を含むマルチグラフ学習アーキテクチャを開発した。
導入されたアーキテクチャは、最適な無線リソース割り当てとヘイトスピーチローカライゼーションタスクに適用され、従来のグラフニューラルネットワークよりも優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2022-09-23T00:33:04Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
不均一グラフニューラルネットワーク(HGNN)は、不均一グラフの豊富な構造的および意味的な情報をノード表現に埋め込む強力な能力を持つ。
既存のHGNNは、同種グラフ上のグラフニューラルネットワーク(GNN)から多くのメカニズム、特に注意機構と多層構造を継承する。
本稿では,これらのメカニズムを詳細に検討し,簡便かつ効率的なヘテロジニアスグラフニューラルネットワーク(SeHGNN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T10:01:46Z) - Neuroplastic graph attention networks for nuclei segmentation in
histopathology images [17.30043617044508]
細胞核のセマンティックセグメンテーションのための新しいアーキテクチャを提案する。
このアーキテクチャは、新しい神経可塑性グラフアテンションネットワークで構成されている。
実験的な評価では、我々のフレームワークは最先端のニューラルネットワークのアンサンブルよりも優れています。
論文 参考訳(メタデータ) (2022-01-10T22:19:14Z) - A Multiscale Graph Convolutional Network for Change Detection in
Homogeneous and Heterogeneous Remote Sensing Images [12.823633963080281]
リモートセンシング画像における変化検出(CD)は、常に研究の領域を広げています。
本稿では,グラフ畳み込みネットワーク(gcn)に基づく新しいcd法と,均質画像と異種画像の両方に対して多スケールオブジェクトベース手法を提案する。
論文 参考訳(メタデータ) (2021-02-16T09:26:31Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
我々はスケルトンに基づく行動認識のためのシンプルで高度にモジュール化されたグラフ畳み込みネットワークアーキテクチャを設計する。
ネットワークは,空間的および時間的経路から多粒度情報を集約するビルディングブロックを繰り返すことで構築される。
論文 参考訳(メタデータ) (2020-11-26T14:43:04Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
グラフ畳み込みネットワーク(GCN)は,豊富な情報を持つ複雑なグラフにおいて,ノードの特徴と位相構造を最適に統合できるかどうかを検討する。
半教師付き分類(AM-GCN)のための適応型マルチチャネルグラフ畳み込みネットワークを提案する。
実験の結果,AM-GCNはノードの特徴とトポロジ的構造の両方から最も相関性の高い情報を抽出することがわかった。
論文 参考訳(メタデータ) (2020-07-05T08:16:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。