論文の概要: Dynamic Hypergraph Representation for Bone Metastasis Cancer Analysis
- arxiv url: http://arxiv.org/abs/2501.16787v1
- Date: Tue, 28 Jan 2025 08:33:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:41:27.885084
- Title: Dynamic Hypergraph Representation for Bone Metastasis Cancer Analysis
- Title(参考訳): 骨転移解析のための動的ハイパーグラフ表示法
- Authors: Yuxuan Chen, Jiawen Li, Huijuan Shi, Yang Xu, Tian Guan, Lianghui Zhu, Yonghong He, Anjia Han,
- Abstract要約: 骨転移解析は患者の生活の質や治療戦略を決定する上で重要な役割を担っている。
従来のグラフ表現のエッジ構築制限を克服する動的ハイパーグラフニューラルネットワーク(DyHG)を提案する。
DyHGは最先端のSOTAベースラインを著しく上回り、複雑な生物学的相互作用をモデル化する能力を示している。
- 参考スコア(独自算出の注目度): 12.383707480056557
- License:
- Abstract: Bone metastasis analysis is a significant challenge in pathology and plays a critical role in determining patient quality of life and treatment strategies. The microenvironment and specific tissue structures are essential for pathologists to predict the primary bone cancer origins and primary bone cancer subtyping. By digitizing bone tissue sections into whole slide images (WSIs) and leveraging deep learning to model slide embeddings, this analysis can be enhanced. However, tumor metastasis involves complex multivariate interactions with diverse bone tissue structures, which traditional WSI analysis methods such as multiple instance learning (MIL) fail to capture. Moreover, graph neural networks (GNNs), limited to modeling pairwise relationships, are hard to represent high-order biological associations. To address these challenges, we propose a dynamic hypergraph neural network (DyHG) that overcomes the edge construction limitations of traditional graph representations by connecting multiple nodes via hyperedges. A low-rank strategy is used to reduce the complexity of parameters in learning hypergraph structures, while a Gumbel-Softmax-based sampling strategy optimizes the patch distribution across hyperedges. An MIL aggregator is then used to derive a graph-level embedding for comprehensive WSI analysis. To evaluate the effectiveness of DyHG, we construct two large-scale datasets for primary bone cancer origins and subtyping classification based on real-world bone metastasis scenarios. Extensive experiments demonstrate that DyHG significantly outperforms state-of-the-art (SOTA) baselines, showcasing its ability to model complex biological interactions and improve the accuracy of bone metastasis analysis.
- Abstract(参考訳): 骨転移解析は病理学において重要な課題であり、患者の生活の質や治療戦略を決定する上で重要な役割を担っている。
病理学者が原発性骨癌の起源と原発性骨がんの亜型を予測するためには、微小環境と特定の組織構造が不可欠である。
骨組織断面をスライド画像全体(WSI)にデジタル化し、深層学習を利用してスライド埋め込みをモデル化することにより、この分析を向上することができる。
しかし、腫瘍転移は様々な骨組織構造との複雑な多変量相互作用を伴うため、従来のWSI分析手法であるMIL(Multiple Case Learning)は捉えられない。
さらに、グラフニューラルネットワーク(GNN)は、ペア関係のモデリングに限られており、高次の生物学的関連を表現できない。
これらの課題に対処するために、ハイパーエッジを介して複数のノードを接続することで、従来のグラフ表現のエッジ構築制限を克服する動的ハイパーグラフニューラルネットワーク(DyHG)を提案する。
低ランク戦略はハイパーグラフ構造学習におけるパラメータの複雑さを軽減するために用いられ、一方、Gumbel-Softmaxベースのサンプリング戦略はハイパーエッジ間のパッチ分布を最適化する。
MILアグリゲータは、総合的なWSI分析のためにグラフレベルの埋め込みを導出するために使用される。
DyHGの有効性を評価するために,本研究では,実世界の骨転移シナリオに基づいて,原発性骨癌由来の2つの大規模データセットとサブタイプ分類を構築した。
大規模な実験により、DyHGは最先端(SOTA)ベースラインを著しく上回り、複雑な生物学的相互作用をモデル化し、骨転移解析の精度を向上させる能力を示している。
関連論文リスト
- Pathology-genomic fusion via biologically informed cross-modality graph learning for survival analysis [7.996257103473235]
そこで我々は,全スライド画像(WSI)とバルクRNA-Seq発現データと異種グラフニューラルネットワークを統合したPGHG(Pathology-Genome Heterogeneous Graph)を提案する。
PGHGは生物学的知識誘導表現学習ネットワークと病理ゲノム不均一グラフから構成される。
腫瘍ゲノムアトラスの低悪性度グリオーマ,グリオーマ,腎乳頭状細胞癌データセットについて検討した。
論文 参考訳(メタデータ) (2024-04-11T09:07:40Z) - Integrating multiscale topology in digital pathology with pyramidal graph convolutional networks [0.10995326465245926]
グラフ畳み込みネットワーク(GCN)は、デジタル病理学における畳み込みニューラルネットワークを用いた複数インスタンス学習の強力な代替手段として登場した。
提案するマルチスケールGCN (MS-GCN) は,スライド画像全体において複数の倍率レベルにまたがる情報を活用することでこの問題に対処する。
MS-GCNは、既存の単一磁化GCN法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-22T09:48:50Z) - GRASP: GRAph-Structured Pyramidal Whole Slide Image Representation [4.5869791542071]
本稿では,スライド画像全体(WSI)をデジタル病理学で処理するためのグラフ構造化多重画像化フレームワークGRASPを提案する。
我々のアプローチは、WSIの処理における病理学者の振舞いと、WSIの階層構造から得られる利益をエミュレートするために設計されている。
従来のプール機構の代わりに収束ベースのノードアグリゲーションを導入するGRASPは、2つの異なるがんデータセットに対して最先端の手法より優れている。
論文 参考訳(メタデータ) (2024-02-06T00:03:44Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
本稿では,スライド病理像全体に対する共有コンテキスト処理の新たな概念を提案する。
AMIGOは、組織内のセルラーグラフを使用して、患者に単一の表現を提供する。
我々のモデルは、データの20%以下で同じ性能を達成できる程度に、欠落した情報に対して強い堅牢性を示す。
論文 参考訳(メタデータ) (2023-03-01T23:37:45Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
下流タスクのためのギガピクセルレベルのスライド病理画像(WSI)の良質な表現を学習することが重要である。
本稿では,病理画像と対応する遺伝子間の階層的マッピングを学習する階層型マルチモーダルトランスフォーマーフレームワークを提案する。
より優れたWSI表現能力を維持しながら、ベンチマーク手法と比較してGPUリソースが少ないアーキテクチャです。
論文 参考訳(メタデータ) (2022-11-29T23:47:56Z) - How GNNs Facilitate CNNs in Mining Geometric Information from
Large-Scale Medical Images [2.2699159408903484]
畳み込みニューラルネットワーク(CNN)が捉えたグローバルな画像レベルの表現を強化するための融合フレームワークを提案する。
大腸癌と胃癌の大規模なコホートから得られた組織学的データセットの融合戦略について検討した。
論文 参考訳(メタデータ) (2022-06-15T15:27:48Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - MRI to PET Cross-Modality Translation using Globally and Locally Aware GAN (GLA-GAN) for Multi-Modal Diagnosis of Alzheimer's Disease [0.6597195879147557]
現実像を合成できるGAN(Generative Adversarial Network)は、標準的なデータ拡張手法の代替として大きな可能性を秘めている。
本稿では,グローバルな構造的整合性と局所的細部への忠実さを両立させるマルチパスアーキテクチャにより,グローバルかつ局所的に認識された画像間変換GAN(GLA-GAN)を提案する。
論文 参考訳(メタデータ) (2021-08-04T16:38:33Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
本稿では,ロバスト表現を学習し,前立腺のセグメンテーションを改善するための新しいマルチサイトネットワーク(MS-Net)を提案する。
当社のMS-Netは,すべてのデータセットのパフォーマンスを一貫して改善し,マルチサイト学習における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-02-09T14:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。