論文の概要: Improved Long Short-Term Memory-based Wastewater Treatment Simulators for Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2403.15091v1
- Date: Fri, 22 Mar 2024 10:20:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 17:48:36.041647
- Title: Improved Long Short-Term Memory-based Wastewater Treatment Simulators for Deep Reinforcement Learning
- Title(参考訳): 長期記憶に基づく深層強化学習のための排水処理シミュレータの改善
- Authors: Esmaeel Mohammadi, Daniel Ortiz-Arroyo, Mikkel Stokholm-Bjerregaard, Aviaja Anna Hansen, Petar Durdevic,
- Abstract要約: 排水処理データのトレーニングモデルを改善するための2つの手法を実装した。
実験結果から, これらの手法を用いることで, シミュレーションの動作を1年を通して動的時間ワープで改善できることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Even though Deep Reinforcement Learning (DRL) showed outstanding results in the fields of Robotics and Games, it is still challenging to implement it in the optimization of industrial processes like wastewater treatment. One of the challenges is the lack of a simulation environment that will represent the actual plant as accurately as possible to train DRL policies. Stochasticity and non-linearity of wastewater treatment data lead to unstable and incorrect predictions of models over long time horizons. One possible reason for the models' incorrect simulation behavior can be related to the issue of compounding error, which is the accumulation of errors throughout the simulation. The compounding error occurs because the model utilizes its predictions as inputs at each time step. The error between the actual data and the prediction accumulates as the simulation continues. We implemented two methods to improve the trained models for wastewater treatment data, which resulted in more accurate simulators: 1- Using the model's prediction data as input in the training step as a tool of correction, and 2- Change in the loss function to consider the long-term predicted shape (dynamics). The experimental results showed that implementing these methods can improve the behavior of simulators in terms of Dynamic Time Warping throughout a year up to 98% compared to the base model. These improvements demonstrate significant promise in creating simulators for biological processes that do not need pre-existing knowledge of the process but instead depend exclusively on time series data obtained from the system.
- Abstract(参考訳): 深層強化学習(DRL)は, ロボティクスやゲームにおいて優れた成果を上げているが, 排水処理などの産業プロセスの最適化においては, 実装が困難である。
課題の1つは、DRLポリシーのトレーニングを可能な限り正確に行うシミュレーション環境の欠如である。
廃棄物処理データの確率性と非線形性は、長期間の地平線上でのモデルの不安定で誤った予測につながる。
モデルの誤ったシミュレーションの振る舞いの1つが、シミュレーション全体のエラーの蓄積である複合的エラーの問題に関係している可能性がある。
合成誤差は、モデルがその予測を各タイミングステップの入力として利用するため発生する。
シミュレーションが進むにつれて、実際のデータと予測の間の誤差が蓄積される。
その結果,1-モデルの予測データをトレーニングステップの入力として使用し,2-損失関数を変化させて長期予測形状(力学)を考慮した。
実験の結果, これらの手法を用いることで, 基礎モデルと比較して1年を通して, 98%までの動的時間ワープでシミュレータの挙動を改善できることがわかった。
これらの改善は、既存のプロセスの知識を必要とせず、システムから得られた時系列データにのみ依存する生物学的プロセスのシミュレータを作成する上で大きな可能性を示している。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Machine learning surrogates for efficient hydrologic modeling: Insights from stochastic simulations of managed aquifer recharge [0.0]
プロセスベース水理モデルと機械学習サロゲートモデルのためのハイブリッドモデリングワークフローを提案する。
ケーススタディでは, このワークフローを, 将来的な管理型帯水層帯水層における飽和地下水流のシミュレーションに応用する。
以上の結果から,MLサロゲートモデルでは,絶対誤差率10%以下で絶対誤差を達成でき,大域保存の順序付けが可能であることが示唆された。
論文 参考訳(メタデータ) (2024-07-30T15:24:27Z) - Deep Learning Based Simulators for the Phosphorus Removal Process
Control in Wastewater Treatment via Deep Reinforcement Learning Algorithms [0.0]
リン除去は、限られた資源への依存を減らすため、排水処理において不可欠である。
化学的および生物学的プロセスに深い強化学習を適用することは、正確なシミュレータを必要とするため困難である。
本研究は、リン除去プロセスを特定するために6つのモデルを訓練し、DRL環境のためのシミュレータを作成するために使用した。
論文 参考訳(メタデータ) (2024-01-23T14:55:46Z) - Real-time simulation of viscoelastic tissue behavior with physics-guided
deep learning [0.8250374560598492]
軟部組織の変位場を粘弾性特性で予測する深層学習法を提案する。
提案手法は従来のCNNモデルよりも精度が高い。
本調査は,仮想現実における深層学習のギャップを埋めるのに役立つものと期待されている。
論文 参考訳(メタデータ) (2023-01-11T18:17:10Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
近年、機械学習(ML)モデルはカオス力学系の力学を正確に予測するために訓練可能であることが示されている。
緩和技術がなければ、この技術は人工的に迅速にエラーを発生させ、不正確な予測と/または気候不安定をもたらす可能性がある。
トレーニング中にモデル入力に付加される多数の独立雑音実効化の効果を決定論的に近似する正規化手法であるLinearized Multi-Noise Training (LMNT)を導入する。
論文 参考訳(メタデータ) (2022-11-09T23:40:52Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
今後のエクサスケール時代は 次世代の物理シミュレーションを 高解像度で提供します
これらのシミュレーションは高解像度であり、ディスク上に大量のシミュレーションデータを格納することはほぼ不可能であるため、機械学習モデルのトレーニングに影響を与える。
この研究は、ディスク上のデータなしで、実行中のシミュレーションにニューラルネットワークを同時にトレーニングするアプローチを示す。
論文 参考訳(メタデータ) (2022-11-09T09:55:14Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Learning Accurate Business Process Simulation Models from Event Logs via
Automated Process Discovery and Deep Learning [0.8164433158925593]
データ駆動シミュレーション(DDS)メソッドは、イベントログからプロセスシミュレーションモデルを学ぶ。
ディープラーニング(DL)モデルは、このような時間的ダイナミクスを正確に捉えることができる。
本稿では,イベントログからプロセスシミュレーションモデルを学ぶためのハイブリッド手法を提案する。
論文 参考訳(メタデータ) (2021-03-22T15:34:57Z) - Designing Accurate Emulators for Scientific Processes using
Calibration-Driven Deep Models [33.935755695805724]
Learn-by-Calibrating (LbC)は、科学応用においてエミュレータを設計するための新しいディープラーニングアプローチである。
また,LbCは広く適応された損失関数の選択に対して,一般化誤差を大幅に改善することを示した。
LbCは、小さなデータレギュレータでも高品質なエミュレータを実現し、さらに重要なことは、明確な事前条件なしで固有のノイズ構造を復元する。
論文 参考訳(メタデータ) (2020-05-05T16:54:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。